非正曲线空间的圆心扩展映射

Pub Date : 2024-01-30 DOI:10.1007/s10711-023-00881-0
Merlin Incerti-Medici
{"title":"非正曲线空间的圆心扩展映射","authors":"Merlin Incerti-Medici","doi":"10.1007/s10711-023-00881-0","DOIUrl":null,"url":null,"abstract":"<p>We show that every cross ratio preserving homeomorphism between boundaries of Hadamard manifolds extends to a map, called circumcenter extension, provided that the manifolds satisfy certain visibility conditions. We describe regions on which this map is Hölder-continuous. Furthermore, we show that this map is a rough isometry, whenever the manifolds admit cocompact group actions by isometries and we improve previously known quasi-isometry constants, provided by Biswas, in the case of 2-dimensional <span>\\(\\mathrm {CAT(-1)}\\)</span> manifolds. Finally, we provide a sufficient condition for this map to be an isometry in the case of Hadamard surfaces.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Circumcenter extension maps for non-positively curved spaces\",\"authors\":\"Merlin Incerti-Medici\",\"doi\":\"10.1007/s10711-023-00881-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that every cross ratio preserving homeomorphism between boundaries of Hadamard manifolds extends to a map, called circumcenter extension, provided that the manifolds satisfy certain visibility conditions. We describe regions on which this map is Hölder-continuous. Furthermore, we show that this map is a rough isometry, whenever the manifolds admit cocompact group actions by isometries and we improve previously known quasi-isometry constants, provided by Biswas, in the case of 2-dimensional <span>\\\\(\\\\mathrm {CAT(-1)}\\\\)</span> manifolds. Finally, we provide a sufficient condition for this map to be an isometry in the case of Hadamard surfaces.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00881-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00881-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,只要流形满足一定的可见性条件,哈达玛德流形边界之间的每一个保持交叉比的同构都会扩展到一个称为圆心扩展的映射。我们描述了这个映射是霍尔德连续的区域。此外,我们还证明,只要流形承认由等距物构成的共容群作用,这个映射就是一个粗糙等距,并且我们改进了之前已知的由比斯瓦斯(Biswas)提供的2维(\mathrm {CAT(-1)}\ )流形的准等距常数。最后,我们提供了在哈达玛曲面情况下该映射是等测的充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Circumcenter extension maps for non-positively curved spaces

分享
查看原文
Circumcenter extension maps for non-positively curved spaces

We show that every cross ratio preserving homeomorphism between boundaries of Hadamard manifolds extends to a map, called circumcenter extension, provided that the manifolds satisfy certain visibility conditions. We describe regions on which this map is Hölder-continuous. Furthermore, we show that this map is a rough isometry, whenever the manifolds admit cocompact group actions by isometries and we improve previously known quasi-isometry constants, provided by Biswas, in the case of 2-dimensional \(\mathrm {CAT(-1)}\) manifolds. Finally, we provide a sufficient condition for this map to be an isometry in the case of Hadamard surfaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信