{"title":"Sturm-Liouville 微分夹杂的强解和温和解","authors":"Tiziana Cardinali, Giulia Duricchi","doi":"10.1007/s11228-024-00706-6","DOIUrl":null,"url":null,"abstract":"<p>Existence results for a Cauchy problem driven by a semilinear differential Sturm-Liouville inclusion are achived by proving, in a preliminary way, an existence theorem for a suitable integral inclusion. In order to obtain this proposition we use a recent fixed point theorem that allows us to work with the weak topology and the De Blasi measure of weak noncompactness. So we avoid requests of compactness on the multivalued terms. Then, by requiring different properties on the map <i>p</i> involved in the Sturm-Liouville inclusion, we are able to establish the existence of both mild solutions and strong ones for the problem examinated. Moreover we focus our attention on the study of controllability for a Cauchy problem governed by a suitable Sturm-Liouville equation. Finally we precise that our results are able to study problems involving a more general version of a semilinear differential Sturm-Liouville inclusion.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Solutions and Mild Solutions for Sturm-Liouville Differential Inclusions\",\"authors\":\"Tiziana Cardinali, Giulia Duricchi\",\"doi\":\"10.1007/s11228-024-00706-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existence results for a Cauchy problem driven by a semilinear differential Sturm-Liouville inclusion are achived by proving, in a preliminary way, an existence theorem for a suitable integral inclusion. In order to obtain this proposition we use a recent fixed point theorem that allows us to work with the weak topology and the De Blasi measure of weak noncompactness. So we avoid requests of compactness on the multivalued terms. Then, by requiring different properties on the map <i>p</i> involved in the Sturm-Liouville inclusion, we are able to establish the existence of both mild solutions and strong ones for the problem examinated. Moreover we focus our attention on the study of controllability for a Cauchy problem governed by a suitable Sturm-Liouville equation. Finally we precise that our results are able to study problems involving a more general version of a semilinear differential Sturm-Liouville inclusion.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11228-024-00706-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11228-024-00706-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
通过初步证明合适积分包含的存在定理,我们可以得到由半线性微分 Sturm-Liouville 包含驱动的 Cauchy 问题的存在结果。为了得到这个命题,我们使用了一个最新的定点定理,它允许我们使用弱拓扑学和弱非紧凑性的 De Blasi 度量。因此,我们避免了对多值项紧凑性的要求。然后,通过对涉及 Sturm-Liouville 包含的映射 p 提出不同的性质要求,我们就能确定所研究问题的温和解和强解均存在。此外,我们还重点研究了由合适的 Sturm-Liouville 方程支配的 Cauchy 问题的可控性。最后,我们精确地指出,我们的结果能够研究涉及半线性微分 Sturm-Liouville 包容的更一般版本的问题。
Strong Solutions and Mild Solutions for Sturm-Liouville Differential Inclusions
Existence results for a Cauchy problem driven by a semilinear differential Sturm-Liouville inclusion are achived by proving, in a preliminary way, an existence theorem for a suitable integral inclusion. In order to obtain this proposition we use a recent fixed point theorem that allows us to work with the weak topology and the De Blasi measure of weak noncompactness. So we avoid requests of compactness on the multivalued terms. Then, by requiring different properties on the map p involved in the Sturm-Liouville inclusion, we are able to establish the existence of both mild solutions and strong ones for the problem examinated. Moreover we focus our attention on the study of controllability for a Cauchy problem governed by a suitable Sturm-Liouville equation. Finally we precise that our results are able to study problems involving a more general version of a semilinear differential Sturm-Liouville inclusion.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.