根栈和抛物线连接上的实结构

Pub Date : 2024-01-30 DOI:10.1007/s10711-023-00880-1
Sujoy Chakraborty, Arjun Paul
{"title":"根栈和抛物线连接上的实结构","authors":"Sujoy Chakraborty, Arjun Paul","doi":"10.1007/s10711-023-00880-1","DOIUrl":null,"url":null,"abstract":"<p>Let <i>D</i> be a reduced effective strict normal crossing divisor on a smooth complex variety <i>X</i>, and let <span>\\(\\mathfrak {X}_D\\)</span> be the associated root stack over <span>\\(\\mathbb C\\)</span>. Suppose that <i>X</i> admits an anti-holomorphic involution (real structure) that keeps <i>D</i> invariant. We show that the root stack <span>\\(\\mathfrak {X}_D\\)</span> naturally admits a real structure compatible with <i>X</i>. We also establish an equivalence of categories between the category of real logarithmic connections on this root stack and the category of real parabolic connections on <i>X</i>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real structures on root stacks and parabolic connections\",\"authors\":\"Sujoy Chakraborty, Arjun Paul\",\"doi\":\"10.1007/s10711-023-00880-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>D</i> be a reduced effective strict normal crossing divisor on a smooth complex variety <i>X</i>, and let <span>\\\\(\\\\mathfrak {X}_D\\\\)</span> be the associated root stack over <span>\\\\(\\\\mathbb C\\\\)</span>. Suppose that <i>X</i> admits an anti-holomorphic involution (real structure) that keeps <i>D</i> invariant. We show that the root stack <span>\\\\(\\\\mathfrak {X}_D\\\\)</span> naturally admits a real structure compatible with <i>X</i>. We also establish an equivalence of categories between the category of real logarithmic connections on this root stack and the category of real parabolic connections on <i>X</i>.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00880-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00880-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 D 是光滑复 variety X 上的还原有效严格正交除数,让 \(\mathfrak {X}_D\) 是 \(\mathbb C\) 上的相关根栈。假设 X 允许有一个反全反卷积(实结构)来保持 D 不变。我们将证明根堆栈 \(\mathfrak {X}_D\) 自然包含一个与 X 兼容的实结构。我们还将在这个根堆栈上的实对数连接范畴和 X 上的实抛物线连接范畴之间建立一个等价范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Real structures on root stacks and parabolic connections

Let D be a reduced effective strict normal crossing divisor on a smooth complex variety X, and let \(\mathfrak {X}_D\) be the associated root stack over \(\mathbb C\). Suppose that X admits an anti-holomorphic involution (real structure) that keeps D invariant. We show that the root stack \(\mathfrak {X}_D\) naturally admits a real structure compatible with X. We also establish an equivalence of categories between the category of real logarithmic connections on this root stack and the category of real parabolic connections on X.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信