{"title":"包装、非正曲、格罗莫夫双曲度量空间的离散群","authors":"Nicola Cavallucci, Andrea Sambusetti","doi":"10.1007/s10711-023-00874-z","DOIUrl":null,"url":null,"abstract":"<p>We prove a quantitative version of the classical Tits’ alternative for discrete groups acting on packed Gromov-hyperbolic spaces supporting a convex geodesic bicombing. Some geometric consequences, as uniform estimates on systole, diastole, algebraic entropy and critical exponent of the groups, will be presented. Finally we will study the behaviour of these group actions under limits, providing new examples of compact classes of metric spaces.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces\",\"authors\":\"Nicola Cavallucci, Andrea Sambusetti\",\"doi\":\"10.1007/s10711-023-00874-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a quantitative version of the classical Tits’ alternative for discrete groups acting on packed Gromov-hyperbolic spaces supporting a convex geodesic bicombing. Some geometric consequences, as uniform estimates on systole, diastole, algebraic entropy and critical exponent of the groups, will be presented. Finally we will study the behaviour of these group actions under limits, providing new examples of compact classes of metric spaces.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-023-00874-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-023-00874-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete groups of packed, non-positively curved, Gromov hyperbolic metric spaces
We prove a quantitative version of the classical Tits’ alternative for discrete groups acting on packed Gromov-hyperbolic spaces supporting a convex geodesic bicombing. Some geometric consequences, as uniform estimates on systole, diastole, algebraic entropy and critical exponent of the groups, will be presented. Finally we will study the behaviour of these group actions under limits, providing new examples of compact classes of metric spaces.