{"title":"随机扰动下 Lotka-Volterra 竞争与互惠模型的渐近特性","authors":"Leonid Shaikhet, Andrei Korobeinikov","doi":"10.1093/imammb/dqae001","DOIUrl":null,"url":null,"abstract":"<p><p>Stochastically perturbed models, where the white noise type stochastic perturbations are proportional to the current system state, the most realistically describe real-life biosystems. However, such models essentially have no equilibrium states apart from one at the origin. This feature makes analysis of such models extremely difficult. Probably, the best result that can be found for such models is finding of accurate estimations of a region in the model phase space that serves as an attractor for model trajectories. In this paper, we consider a classical stochastically perturbed Lotka-Volterra model of competing or symbiotic populations, where the white noise type perturbations are proportional to the current system state. Using the direct Lyapunov method in a combination with a recently developed technique, we establish global asymptotic properties of this model. In order to do this, we, firstly, construct a Lyapunov function that is applicable to the both competing (and globally stable) and symbiotic deterministic Lotka-Volterra models. Then, applying this Lyapunov function to the stochastically perturbed model, we show that solutions with positive initial conditions converge to a certain compact region in the model phase space and oscillate around this region thereafter. The direct Lyapunov method allows to find estimates for this region. We also show that if the magnitude of the noise exceeds a certain critical level, then some or all species extinct via process of the stochastic stabilization ('stabilization by noise'). The approach applied in this paper allows to obtain necessary conditions for the extinction. Sufficient conditions for the extinction (that for this model occurs via the process that is known as the 'stochastic stabilization', or the 'stabilization by noise') are found applying the Khasminskii-type Lyapunov functions.</p>","PeriodicalId":94130,"journal":{"name":"Mathematical medicine and biology : a journal of the IMA","volume":" ","pages":"19-34"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic properties of the Lotka-Volterra competition and mutualism model under stochastic perturbations.\",\"authors\":\"Leonid Shaikhet, Andrei Korobeinikov\",\"doi\":\"10.1093/imammb/dqae001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Stochastically perturbed models, where the white noise type stochastic perturbations are proportional to the current system state, the most realistically describe real-life biosystems. However, such models essentially have no equilibrium states apart from one at the origin. This feature makes analysis of such models extremely difficult. Probably, the best result that can be found for such models is finding of accurate estimations of a region in the model phase space that serves as an attractor for model trajectories. In this paper, we consider a classical stochastically perturbed Lotka-Volterra model of competing or symbiotic populations, where the white noise type perturbations are proportional to the current system state. Using the direct Lyapunov method in a combination with a recently developed technique, we establish global asymptotic properties of this model. In order to do this, we, firstly, construct a Lyapunov function that is applicable to the both competing (and globally stable) and symbiotic deterministic Lotka-Volterra models. Then, applying this Lyapunov function to the stochastically perturbed model, we show that solutions with positive initial conditions converge to a certain compact region in the model phase space and oscillate around this region thereafter. The direct Lyapunov method allows to find estimates for this region. We also show that if the magnitude of the noise exceeds a certain critical level, then some or all species extinct via process of the stochastic stabilization ('stabilization by noise'). The approach applied in this paper allows to obtain necessary conditions for the extinction. Sufficient conditions for the extinction (that for this model occurs via the process that is known as the 'stochastic stabilization', or the 'stabilization by noise') are found applying the Khasminskii-type Lyapunov functions.</p>\",\"PeriodicalId\":94130,\"journal\":{\"name\":\"Mathematical medicine and biology : a journal of the IMA\",\"volume\":\" \",\"pages\":\"19-34\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical medicine and biology : a journal of the IMA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/imammb/dqae001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical medicine and biology : a journal of the IMA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/imammb/dqae001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Asymptotic properties of the Lotka-Volterra competition and mutualism model under stochastic perturbations.
Stochastically perturbed models, where the white noise type stochastic perturbations are proportional to the current system state, the most realistically describe real-life biosystems. However, such models essentially have no equilibrium states apart from one at the origin. This feature makes analysis of such models extremely difficult. Probably, the best result that can be found for such models is finding of accurate estimations of a region in the model phase space that serves as an attractor for model trajectories. In this paper, we consider a classical stochastically perturbed Lotka-Volterra model of competing or symbiotic populations, where the white noise type perturbations are proportional to the current system state. Using the direct Lyapunov method in a combination with a recently developed technique, we establish global asymptotic properties of this model. In order to do this, we, firstly, construct a Lyapunov function that is applicable to the both competing (and globally stable) and symbiotic deterministic Lotka-Volterra models. Then, applying this Lyapunov function to the stochastically perturbed model, we show that solutions with positive initial conditions converge to a certain compact region in the model phase space and oscillate around this region thereafter. The direct Lyapunov method allows to find estimates for this region. We also show that if the magnitude of the noise exceeds a certain critical level, then some or all species extinct via process of the stochastic stabilization ('stabilization by noise'). The approach applied in this paper allows to obtain necessary conditions for the extinction. Sufficient conditions for the extinction (that for this model occurs via the process that is known as the 'stochastic stabilization', or the 'stabilization by noise') are found applying the Khasminskii-type Lyapunov functions.