Xiangrui Tian, Yinjun Jia, Tong Xu, Jie Yin, Yihe Chen, Jiansen Mao
{"title":"基于引导滤波的多级图像细节增强技术","authors":"Xiangrui Tian, Yinjun Jia, Tong Xu, Jie Yin, Yihe Chen, Jiansen Mao","doi":"10.1117/12.3014387","DOIUrl":null,"url":null,"abstract":"Image blur and detail information loss are caused by various factors such as imaging environment and hardware performance, therefore a multi-level image detail enhancement method based on guided filtering is proposed. Firstly, the input image is iteratively filtered by using the guided filter, to obtain background images with different smoothness; then the background image is subtracted from the original image to obtain detail images with different levels; finally, a dynamic saturation function is used to adjust the weights of detail images, which are superimposed with the original image to obtain the enhanced image. The proposed method is compared with the existing enhancement algorithms using open dataset. The experimental results show that, compared with other enhancement methods, the proposed method in this paper achieves a better enhancement effect, the enhanced image has clear edges, and the visual effect is suitable. Compared with other methods, the objective indicators of information entropy, average gradient, and spatial frequency are improved on average. 1.39%, 27.9%, and 19.3%.","PeriodicalId":516634,"journal":{"name":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","volume":"13 s4","pages":"1296918 - 1296918-8"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-level image detail enhancement based on guided filtering\",\"authors\":\"Xiangrui Tian, Yinjun Jia, Tong Xu, Jie Yin, Yihe Chen, Jiansen Mao\",\"doi\":\"10.1117/12.3014387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image blur and detail information loss are caused by various factors such as imaging environment and hardware performance, therefore a multi-level image detail enhancement method based on guided filtering is proposed. Firstly, the input image is iteratively filtered by using the guided filter, to obtain background images with different smoothness; then the background image is subtracted from the original image to obtain detail images with different levels; finally, a dynamic saturation function is used to adjust the weights of detail images, which are superimposed with the original image to obtain the enhanced image. The proposed method is compared with the existing enhancement algorithms using open dataset. The experimental results show that, compared with other enhancement methods, the proposed method in this paper achieves a better enhancement effect, the enhanced image has clear edges, and the visual effect is suitable. Compared with other methods, the objective indicators of information entropy, average gradient, and spatial frequency are improved on average. 1.39%, 27.9%, and 19.3%.\",\"PeriodicalId\":516634,\"journal\":{\"name\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"volume\":\"13 s4\",\"pages\":\"1296918 - 1296918-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3014387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Algorithm, Imaging Processing and Machine Vision (AIPMV 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3014387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-level image detail enhancement based on guided filtering
Image blur and detail information loss are caused by various factors such as imaging environment and hardware performance, therefore a multi-level image detail enhancement method based on guided filtering is proposed. Firstly, the input image is iteratively filtered by using the guided filter, to obtain background images with different smoothness; then the background image is subtracted from the original image to obtain detail images with different levels; finally, a dynamic saturation function is used to adjust the weights of detail images, which are superimposed with the original image to obtain the enhanced image. The proposed method is compared with the existing enhancement algorithms using open dataset. The experimental results show that, compared with other enhancement methods, the proposed method in this paper achieves a better enhancement effect, the enhanced image has clear edges, and the visual effect is suitable. Compared with other methods, the objective indicators of information entropy, average gradient, and spatial frequency are improved on average. 1.39%, 27.9%, and 19.3%.