滚动球体的整体性探索

IF 2.9 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Theresa E. Honein, Oliver M. O’Reilly
{"title":"滚动球体的整体性探索","authors":"Theresa E. Honein, Oliver M. O’Reilly","doi":"10.1098/rspa.2023.0684","DOIUrl":null,"url":null,"abstract":"Consider a rigid body rolling with one point in contact with a fixed surface. Now suppose that the instantaneous point of contact traces out a closed path. As a demonstration of a phenomenon known as holonomy, the body will typically not return to its original orientation. The simplest demonstration of this phenomenon in rigid body dynamics occurs in the motion of a rolling sphere and finds application to path planning and reorientation of spherical robots. Motivated by earlier works of Bryant and Johnson, we establish expressions for the change in orientation of a rolling sphere after completing a rectangular path. We use numerical methods to show that all possible changes in orientation are possible using a single rectangular path. Based on the Euler angle parameterization of a rotation, we develop a more intuitive method to achieve a desired orientation using three rectangular paths. With regards to applications, the paths we discuss can be employed to achieve any desired reorientation of a spherical robot.","PeriodicalId":20716,"journal":{"name":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explorations of the holonomy of a rolling sphere\",\"authors\":\"Theresa E. Honein, Oliver M. O’Reilly\",\"doi\":\"10.1098/rspa.2023.0684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider a rigid body rolling with one point in contact with a fixed surface. Now suppose that the instantaneous point of contact traces out a closed path. As a demonstration of a phenomenon known as holonomy, the body will typically not return to its original orientation. The simplest demonstration of this phenomenon in rigid body dynamics occurs in the motion of a rolling sphere and finds application to path planning and reorientation of spherical robots. Motivated by earlier works of Bryant and Johnson, we establish expressions for the change in orientation of a rolling sphere after completing a rectangular path. We use numerical methods to show that all possible changes in orientation are possible using a single rectangular path. Based on the Euler angle parameterization of a rotation, we develop a more intuitive method to achieve a desired orientation using three rectangular paths. With regards to applications, the paths we discuss can be employed to achieve any desired reorientation of a spherical robot.\",\"PeriodicalId\":20716,\"journal\":{\"name\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1098/rspa.2023.0684\",\"RegionNum\":3,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rspa.2023.0684","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个刚体在滚动时有一点与固定表面接触。现在假设瞬时接触点划出了一条封闭路径。为了证明一种被称为整体性的现象,刚体通常不会回到原来的方向。这种现象在刚体动力学中最简单的演示就是滚动球体的运动,并可应用于球形机器人的路径规划和重新定向。受布赖恩特和约翰逊早期研究的启发,我们建立了滚动球体完成矩形路径后方向变化的表达式。我们使用数值方法证明,使用单一矩形路径可以实现所有可能的方向变化。基于旋转的欧拉角参数化,我们开发了一种更直观的方法,利用三条矩形路径实现所需的方向。在应用方面,我们讨论的路径可用于实现球形机器人的任何所需的方向调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Explorations of the holonomy of a rolling sphere
Consider a rigid body rolling with one point in contact with a fixed surface. Now suppose that the instantaneous point of contact traces out a closed path. As a demonstration of a phenomenon known as holonomy, the body will typically not return to its original orientation. The simplest demonstration of this phenomenon in rigid body dynamics occurs in the motion of a rolling sphere and finds application to path planning and reorientation of spherical robots. Motivated by earlier works of Bryant and Johnson, we establish expressions for the change in orientation of a rolling sphere after completing a rectangular path. We use numerical methods to show that all possible changes in orientation are possible using a single rectangular path. Based on the Euler angle parameterization of a rotation, we develop a more intuitive method to achieve a desired orientation using three rectangular paths. With regards to applications, the paths we discuss can be employed to achieve any desired reorientation of a spherical robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
227
审稿时长
3.0 months
期刊介绍: Proceedings A has an illustrious history of publishing pioneering and influential research articles across the entire range of the physical and mathematical sciences. These have included Maxwell"s electromagnetic theory, the Braggs" first account of X-ray crystallography, Dirac"s relativistic theory of the electron, and Watson and Crick"s detailed description of the structure of DNA.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信