智能系统中基于深度 CNN 的脑肿瘤检测

Brij B. Gupta , Akshat Gaurav , Varsha Arya
{"title":"智能系统中基于深度 CNN 的脑肿瘤检测","authors":"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Varsha Arya","doi":"10.1016/j.ijin.2023.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>The early detection of brain tumor is crucial for effective treatment and improved patient prognosis in Industrial Information Systems. This research introduces a novel computational model employing a three-layer Convolutional Neural Network (CNN) for the identification of brain tumors in Industrial Information Systems. Leveraging advanced computational techniques, this proposed model can autonomously detect intricate patterns and features from medical imaging data, resulting in more accurate and expedited diagnoses. With an impressive 90 % precision rate, our model demonstrates the potential to serve as a valuable tool for medical professionals working in the field of neuroimaging. By presenting a dependable and precise computational model, this study contributes to the advancement of brain tumor identification within the domain of medical imaging. We anticipate that our methodology will aid healthcare providers in making more accurate diagnoses, thereby leading to enhanced patient outcomes. Potential avenues for future research encompass refining the model's fundamental architecture and exploring real-time therapeutic applications.</p></div>","PeriodicalId":100702,"journal":{"name":"International Journal of Intelligent Networks","volume":"5 ","pages":"Pages 30-37"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666603023000465/pdfft?md5=dfed15092cf58564d51a55c1d9f1edbe&pid=1-s2.0-S2666603023000465-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Deep CNN based brain tumor detection in intelligent systems\",\"authors\":\"Brij B. Gupta ,&nbsp;Akshat Gaurav ,&nbsp;Varsha Arya\",\"doi\":\"10.1016/j.ijin.2023.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The early detection of brain tumor is crucial for effective treatment and improved patient prognosis in Industrial Information Systems. This research introduces a novel computational model employing a three-layer Convolutional Neural Network (CNN) for the identification of brain tumors in Industrial Information Systems. Leveraging advanced computational techniques, this proposed model can autonomously detect intricate patterns and features from medical imaging data, resulting in more accurate and expedited diagnoses. With an impressive 90 % precision rate, our model demonstrates the potential to serve as a valuable tool for medical professionals working in the field of neuroimaging. By presenting a dependable and precise computational model, this study contributes to the advancement of brain tumor identification within the domain of medical imaging. We anticipate that our methodology will aid healthcare providers in making more accurate diagnoses, thereby leading to enhanced patient outcomes. Potential avenues for future research encompass refining the model's fundamental architecture and exploring real-time therapeutic applications.</p></div>\",\"PeriodicalId\":100702,\"journal\":{\"name\":\"International Journal of Intelligent Networks\",\"volume\":\"5 \",\"pages\":\"Pages 30-37\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666603023000465/pdfft?md5=dfed15092cf58564d51a55c1d9f1edbe&pid=1-s2.0-S2666603023000465-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Intelligent Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666603023000465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Intelligent Networks","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666603023000465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在工业信息系统中,早期发现脑肿瘤对于有效治疗和改善患者预后至关重要。本研究采用三层卷积神经网络(CNN)建立了一个新型计算模型,用于在工业信息系统中识别脑肿瘤。利用先进的计算技术,该模型可从医学影像数据中自主检测出复杂的模式和特征,从而提高诊断的准确性和速度。我们的模型精确率高达 90%,令人印象深刻,有望成为神经成像领域医疗专业人员的宝贵工具。通过提出一个可靠而精确的计算模型,这项研究为医学影像领域脑肿瘤识别的进步做出了贡献。我们预计,我们的方法将帮助医疗服务提供者做出更准确的诊断,从而提高患者的治疗效果。未来研究的潜在途径包括完善模型的基本架构和探索实时治疗应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep CNN based brain tumor detection in intelligent systems

The early detection of brain tumor is crucial for effective treatment and improved patient prognosis in Industrial Information Systems. This research introduces a novel computational model employing a three-layer Convolutional Neural Network (CNN) for the identification of brain tumors in Industrial Information Systems. Leveraging advanced computational techniques, this proposed model can autonomously detect intricate patterns and features from medical imaging data, resulting in more accurate and expedited diagnoses. With an impressive 90 % precision rate, our model demonstrates the potential to serve as a valuable tool for medical professionals working in the field of neuroimaging. By presenting a dependable and precise computational model, this study contributes to the advancement of brain tumor identification within the domain of medical imaging. We anticipate that our methodology will aid healthcare providers in making more accurate diagnoses, thereby leading to enhanced patient outcomes. Potential avenues for future research encompass refining the model's fundamental architecture and exploring real-time therapeutic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信