用于 InSAR 大地测量的紧凑型有源转发器现场测试

IF 0.9 Q4 REMOTE SENSING
A. Meister, J. Balasis-Levinsen, K. Keller, M. R. V. Pedersen, J. P. Merryman Boncori, M. Jensen
{"title":"用于 InSAR 大地测量的紧凑型有源转发器现场测试","authors":"A. Meister, J. Balasis-Levinsen, K. Keller, M. R. V. Pedersen, J. P. Merryman Boncori, M. Jensen","doi":"10.1515/jogs-2022-0164","DOIUrl":null,"url":null,"abstract":"\n Compact active transponders (CATs) – also termed electronic corner reflectors – are compact electronic devices designed to receive, actively amplify and re-transmit a radar signal, e.g. a C-band radar signal received from a Sentinel-1 satellite. CATs can potentially be useful for a number of purposes, e.g. if co-located with geodetic infrastructure. However, CATs have only recently become commercially available, and therefore, the usability and long-term performance of CATs are not well known. In this study, two CATs are tested under realistic operating conditions for a period of 14 months, from July 2020 to September 2021. The displacement time series of the CATs are determined from a persistent scatterers interferometric synthetic aperture radar processing of four tracks of Sentinel-1A/-1B data with a passive corner reflector (CR) as the spatial reference. The displacement time series of the CATs are evaluated against a ground truth established from repeated levellings between the CR and the CATs. Based on the results of this study, it is found that a sudden vertical displacement of a CAT can be determined with an accuracy better than 1 cm, possibly a few millimetres. Furthermore, it is found that the mean vertical velocity of a CAT, calculated from 14 months of interferometric synthetic aperture radar displacement time series, can be determined with an accuracy of a few mm/year. Finally, the line of sight (LoS) phase error is generally found to be moderately correlated with temperature, with an instrument-specific linear relationship between LoS error and temperature ranging between approx. 0.1 and 0.2 mm/°C. This correlation between LoS phase error and temperature can in principle be used for instrument-specific calibrations, which is a topic that should be addressed in future studies.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A field test of compact active transponders for InSAR geodesy\",\"authors\":\"A. Meister, J. Balasis-Levinsen, K. Keller, M. R. V. Pedersen, J. P. Merryman Boncori, M. Jensen\",\"doi\":\"10.1515/jogs-2022-0164\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Compact active transponders (CATs) – also termed electronic corner reflectors – are compact electronic devices designed to receive, actively amplify and re-transmit a radar signal, e.g. a C-band radar signal received from a Sentinel-1 satellite. CATs can potentially be useful for a number of purposes, e.g. if co-located with geodetic infrastructure. However, CATs have only recently become commercially available, and therefore, the usability and long-term performance of CATs are not well known. In this study, two CATs are tested under realistic operating conditions for a period of 14 months, from July 2020 to September 2021. The displacement time series of the CATs are determined from a persistent scatterers interferometric synthetic aperture radar processing of four tracks of Sentinel-1A/-1B data with a passive corner reflector (CR) as the spatial reference. The displacement time series of the CATs are evaluated against a ground truth established from repeated levellings between the CR and the CATs. Based on the results of this study, it is found that a sudden vertical displacement of a CAT can be determined with an accuracy better than 1 cm, possibly a few millimetres. Furthermore, it is found that the mean vertical velocity of a CAT, calculated from 14 months of interferometric synthetic aperture radar displacement time series, can be determined with an accuracy of a few mm/year. Finally, the line of sight (LoS) phase error is generally found to be moderately correlated with temperature, with an instrument-specific linear relationship between LoS error and temperature ranging between approx. 0.1 and 0.2 mm/°C. This correlation between LoS phase error and temperature can in principle be used for instrument-specific calibrations, which is a topic that should be addressed in future studies.\",\"PeriodicalId\":44569,\"journal\":{\"name\":\"Journal of Geodetic Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodetic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jogs-2022-0164\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2022-0164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 0

摘要

紧凑型有源转发器(CAT)又称电子角反射器,是一种紧凑型电子装置,用于接收、主动放大和再发射雷达信号,例如从哨兵-1 号卫星接收的 C 波段雷达信号。CAT 可用于多种用途,例如与大地测量基础设施共用位置。不过,CAT 最近才开始商业化,因此对其可用性和长期性能还不甚了解。本研究在 2020 年 7 月至 2021 年 9 月的 14 个月期间,在实际操作条件下测试了两个 CAT。CAT 的位移时间序列是通过持续散射体干涉合成孔径雷达处理哨兵-1A/-1B 的四轨数据并以被动角反射器 (CR) 作为空间参考而确定的。CAT 的位移时间序列是根据 CR 与 CAT 之间反复平差所建立的地面实况进行评估的。根据这项研究的结果,可以确定 CAT 的突然垂直位移,精确度优于 1 厘米,甚至几毫米。此外,研究还发现,根据 14 个月的干涉合成孔径雷达位移时间序列计算出的 CAT 平均垂直速度可以精确到几毫米/年。最后,视线(LoS)相位误差一般与温度适度相关,视线误差与温度之间的线性关系约为 0.1 至 0.2 毫米/摄氏度。LoS 相位误差与温度之间的这种相关性原则上可用于特定仪器的校准,这也是今后研究中需要解决的一个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A field test of compact active transponders for InSAR geodesy
Compact active transponders (CATs) – also termed electronic corner reflectors – are compact electronic devices designed to receive, actively amplify and re-transmit a radar signal, e.g. a C-band radar signal received from a Sentinel-1 satellite. CATs can potentially be useful for a number of purposes, e.g. if co-located with geodetic infrastructure. However, CATs have only recently become commercially available, and therefore, the usability and long-term performance of CATs are not well known. In this study, two CATs are tested under realistic operating conditions for a period of 14 months, from July 2020 to September 2021. The displacement time series of the CATs are determined from a persistent scatterers interferometric synthetic aperture radar processing of four tracks of Sentinel-1A/-1B data with a passive corner reflector (CR) as the spatial reference. The displacement time series of the CATs are evaluated against a ground truth established from repeated levellings between the CR and the CATs. Based on the results of this study, it is found that a sudden vertical displacement of a CAT can be determined with an accuracy better than 1 cm, possibly a few millimetres. Furthermore, it is found that the mean vertical velocity of a CAT, calculated from 14 months of interferometric synthetic aperture radar displacement time series, can be determined with an accuracy of a few mm/year. Finally, the line of sight (LoS) phase error is generally found to be moderately correlated with temperature, with an instrument-specific linear relationship between LoS error and temperature ranging between approx. 0.1 and 0.2 mm/°C. This correlation between LoS phase error and temperature can in principle be used for instrument-specific calibrations, which is a topic that should be addressed in future studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信