通过增强锂离子扩散动力学实现固态电池中稳定锂离子电镀/剥离的混合离子电子传导 LixAg 合金阳极

Anran Cheng , Pei Gao , Ruxing Wang , Kangli Wang , Kai Jiang
{"title":"通过增强锂离子扩散动力学实现固态电池中稳定锂离子电镀/剥离的混合离子电子传导 LixAg 合金阳极","authors":"Anran Cheng ,&nbsp;Pei Gao ,&nbsp;Ruxing Wang ,&nbsp;Kangli Wang ,&nbsp;Kai Jiang","doi":"10.1016/j.geits.2024.100179","DOIUrl":null,"url":null,"abstract":"<div><div>Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries (ASSLMBs), garnet-type solid electrolytes (Li<sub>6.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>Ta<sub>0.6</sub>O<sub>12</sub>, LLZTO) are critically plagued by interface instability with Li anode and the vulnerability to Li dendrite, which are attributed to poor Li diffusion kinetic in bulk Li metal. Herein, a Li<sub><em>x</em></sub>Ag solid solution alloy with high Li diffusion kinetic is reported as a mixed ion-electron conductor (MIEC) alloy anode. The high Li diffusion kinetic stemming from a low eutectic point and a high mutual solubility of Li<sub><em>x</em></sub>Ag could reduce the Li concentration gradient in the anode, regulate Li electrochemical potential, and change the relative local overpotential for Li stripping/plating in the anode. Notably, Li stripping/plating prefers energetically at the Li<sub><em>x</em></sub>Ag/current collector interface rather than the LLZTO/Li<sub><em>x</em></sub>Ag interface. Therefore, the contact loss is avoided at the LLZTO/Li<sub><em>x</em></sub>Ag interface. As a result, excellent cycling stability (∼1,200 ​h at 0.2 ​mA/cm<sup>2</sup>), and dendrites tolerance (critical current density of 1.2 ​mA/cm<sup>2</sup>) are demonstrated by using Li<sub><em>x</em></sub>Ag as anode. Further research has elucidated that those alloys with low eutectic temperature and high mutual solubility with lithium should be focused on, as they would provide and maintain a soft lattice and a high lithium diffusion rate during composition change. This provides a basis for the selection of alloy phases in negative electrode materials, as well as their application in garnet-based ASSLMBs.</div></div>","PeriodicalId":100596,"journal":{"name":"Green Energy and Intelligent Transportation","volume":"4 1","pages":"Article 100179"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed ion-electron conducting LixAg alloy anode enabling stable Li plating/stripping in solid-state batteries via enhanced Li diffusion kinetic\",\"authors\":\"Anran Cheng ,&nbsp;Pei Gao ,&nbsp;Ruxing Wang ,&nbsp;Kangli Wang ,&nbsp;Kai Jiang\",\"doi\":\"10.1016/j.geits.2024.100179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries (ASSLMBs), garnet-type solid electrolytes (Li<sub>6.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>Ta<sub>0.6</sub>O<sub>12</sub>, LLZTO) are critically plagued by interface instability with Li anode and the vulnerability to Li dendrite, which are attributed to poor Li diffusion kinetic in bulk Li metal. Herein, a Li<sub><em>x</em></sub>Ag solid solution alloy with high Li diffusion kinetic is reported as a mixed ion-electron conductor (MIEC) alloy anode. The high Li diffusion kinetic stemming from a low eutectic point and a high mutual solubility of Li<sub><em>x</em></sub>Ag could reduce the Li concentration gradient in the anode, regulate Li electrochemical potential, and change the relative local overpotential for Li stripping/plating in the anode. Notably, Li stripping/plating prefers energetically at the Li<sub><em>x</em></sub>Ag/current collector interface rather than the LLZTO/Li<sub><em>x</em></sub>Ag interface. Therefore, the contact loss is avoided at the LLZTO/Li<sub><em>x</em></sub>Ag interface. As a result, excellent cycling stability (∼1,200 ​h at 0.2 ​mA/cm<sup>2</sup>), and dendrites tolerance (critical current density of 1.2 ​mA/cm<sup>2</sup>) are demonstrated by using Li<sub><em>x</em></sub>Ag as anode. Further research has elucidated that those alloys with low eutectic temperature and high mutual solubility with lithium should be focused on, as they would provide and maintain a soft lattice and a high lithium diffusion rate during composition change. This provides a basis for the selection of alloy phases in negative electrode materials, as well as their application in garnet-based ASSLMBs.</div></div>\",\"PeriodicalId\":100596,\"journal\":{\"name\":\"Green Energy and Intelligent Transportation\",\"volume\":\"4 1\",\"pages\":\"Article 100179\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Intelligent Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773153724000318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Intelligent Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773153724000318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

虽然石榴石型固体电解质(Li6.5La3Zr1.5Ta0.6O12, LLZTO)在全固态锂金属电池(asslbbs)市场上具有巨大的发展潜力,但由于大块锂金属中Li扩散动力学差,其与Li阳极界面不稳定,易受Li枝晶的影响。本文报道了一种具有高Li扩散动力学的LixAg固溶体合金作为混合离子-电子导体(MIEC)合金阳极。由于LixAg的低共晶点和高互溶性,其高的Li扩散动力学降低了阳极中Li浓度梯度,调节了Li电化学电位,改变了阳极中Li溶出/镀的相对局部过电位。值得注意的是,锂剥离/镀更倾向于LixAg/集流器界面,而不是LLZTO/LixAg界面。因此,避免了LLZTO/LixAg接口的接触损耗。因此,使用LixAg作为阳极,证明了优异的循环稳定性(在0.2 mA/cm2下约1200小时)和枝晶耐受性(临界电流密度为1.2 mA/cm2)。进一步的研究表明,在组成变化过程中,低共晶温度和与锂互溶性高的合金可以提供并保持软晶格和高锂扩散速率。这为负极材料中合金相的选择及其在石榴石基asslmb中的应用提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mixed ion-electron conducting LixAg alloy anode enabling stable Li plating/stripping in solid-state batteries via enhanced Li diffusion kinetic

Mixed ion-electron conducting LixAg alloy anode enabling stable Li plating/stripping in solid-state batteries via enhanced Li diffusion kinetic
Although showing huge potential in prospering the marketplace of all-solid-state lithium metal batteries (ASSLMBs), garnet-type solid electrolytes (Li6.5La3Zr1.5Ta0.6O12, LLZTO) are critically plagued by interface instability with Li anode and the vulnerability to Li dendrite, which are attributed to poor Li diffusion kinetic in bulk Li metal. Herein, a LixAg solid solution alloy with high Li diffusion kinetic is reported as a mixed ion-electron conductor (MIEC) alloy anode. The high Li diffusion kinetic stemming from a low eutectic point and a high mutual solubility of LixAg could reduce the Li concentration gradient in the anode, regulate Li electrochemical potential, and change the relative local overpotential for Li stripping/plating in the anode. Notably, Li stripping/plating prefers energetically at the LixAg/current collector interface rather than the LLZTO/LixAg interface. Therefore, the contact loss is avoided at the LLZTO/LixAg interface. As a result, excellent cycling stability (∼1,200 ​h at 0.2 ​mA/cm2), and dendrites tolerance (critical current density of 1.2 ​mA/cm2) are demonstrated by using LixAg as anode. Further research has elucidated that those alloys with low eutectic temperature and high mutual solubility with lithium should be focused on, as they would provide and maintain a soft lattice and a high lithium diffusion rate during composition change. This provides a basis for the selection of alloy phases in negative electrode materials, as well as their application in garnet-based ASSLMBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信