关于具有密度相关粘度的三维非均质不可压缩纳维-斯托克斯方程的全局好拟性

Dongjuan Niu, Lu Wang
{"title":"关于具有密度相关粘度的三维非均质不可压缩纳维-斯托克斯方程的全局好拟性","authors":"Dongjuan Niu, Lu Wang","doi":"10.1360/SCM-2023-0384","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the global well-posedness of 3D inhomogeneous incompressible Navier-Stokes equations with density-dependent viscosity when the initial velocity is sufficiently small in the critical Besov space $\\dot{B}^{\\frac 12}$. Compared with the previous result of Abidi and Zhang (Science China Mathematics 58 (6) (2015) 1129-1150), we remove the smallness assumption of the viscosity $\\mu(\\rho_0)-1$ in $L^{\\infty}$-norm.","PeriodicalId":513480,"journal":{"name":"SCIENTIA SINICA Mathematica","volume":"46 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the global well-posedness of 3D inhomogeneous incompressible Navier-Stokes equations with density-dependent viscosity\",\"authors\":\"Dongjuan Niu, Lu Wang\",\"doi\":\"10.1360/SCM-2023-0384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the global well-posedness of 3D inhomogeneous incompressible Navier-Stokes equations with density-dependent viscosity when the initial velocity is sufficiently small in the critical Besov space $\\\\dot{B}^{\\\\frac 12}$. Compared with the previous result of Abidi and Zhang (Science China Mathematics 58 (6) (2015) 1129-1150), we remove the smallness assumption of the viscosity $\\\\mu(\\\\rho_0)-1$ in $L^{\\\\infty}$-norm.\",\"PeriodicalId\":513480,\"journal\":{\"name\":\"SCIENTIA SINICA Mathematica\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SCIENTIA SINICA Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1360/SCM-2023-0384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCIENTIA SINICA Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/SCM-2023-0384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文关注在临界贝索夫空间$\dot{B}^{\frac 12}$中,当初速度足够小时,具有密度相关粘性的三维非均质不可压缩纳维-斯托克斯方程的全局良好拟性。与Abidi和Zhang(《中国科学-数学》58 (6) (2015) 1129-1150)之前的结果相比,我们在$L^{\infty}$-norm中取消了粘度$\mu(\rho_0)-1$的小性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the global well-posedness of 3D inhomogeneous incompressible Navier-Stokes equations with density-dependent viscosity
In this paper, we are concerned with the global well-posedness of 3D inhomogeneous incompressible Navier-Stokes equations with density-dependent viscosity when the initial velocity is sufficiently small in the critical Besov space $\dot{B}^{\frac 12}$. Compared with the previous result of Abidi and Zhang (Science China Mathematics 58 (6) (2015) 1129-1150), we remove the smallness assumption of the viscosity $\mu(\rho_0)-1$ in $L^{\infty}$-norm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信