利用岩石学机器学习进行储层评估:案例研究

Rongbo Shao , Hua Wang , Lizhi Xiao
{"title":"利用岩石学机器学习进行储层评估:案例研究","authors":"Rongbo Shao ,&nbsp;Hua Wang ,&nbsp;Lizhi Xiao","doi":"10.1016/j.aiig.2024.100070","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a novel machine learning approach to improve the formation evaluation from logs by integrating petrophysical information with neural networks using a loss function. The petrophysical information can either be specific logging response equations or abstract relationships between logging data and reservoir parameters. We compare our method's performances using two datasets and evaluate the influences of multi-task learning, model structure, transfer learning, and petrophysics informed machine learning (PIML). Our experiments demonstrate that PIML significantly enhances the performance of formation evaluation, and the structure of residual neural network is optimal for incorporating petrophysical constraints. Moreover, PIML is less sensitive to noise. These findings indicate that it is crucial to integrate data-driven machine learning with petrophysical mechanism for the application of artificial intelligence in oil and gas exploration.</p></div>","PeriodicalId":100124,"journal":{"name":"Artificial Intelligence in Geosciences","volume":"5 ","pages":"Article 100070"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266654412400011X/pdfft?md5=ab04eebe079fb967d62413622001e5fb&pid=1-s2.0-S266654412400011X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Reservoir evaluation using petrophysics informed machine learning: A case study\",\"authors\":\"Rongbo Shao ,&nbsp;Hua Wang ,&nbsp;Lizhi Xiao\",\"doi\":\"10.1016/j.aiig.2024.100070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We propose a novel machine learning approach to improve the formation evaluation from logs by integrating petrophysical information with neural networks using a loss function. The petrophysical information can either be specific logging response equations or abstract relationships between logging data and reservoir parameters. We compare our method's performances using two datasets and evaluate the influences of multi-task learning, model structure, transfer learning, and petrophysics informed machine learning (PIML). Our experiments demonstrate that PIML significantly enhances the performance of formation evaluation, and the structure of residual neural network is optimal for incorporating petrophysical constraints. Moreover, PIML is less sensitive to noise. These findings indicate that it is crucial to integrate data-driven machine learning with petrophysical mechanism for the application of artificial intelligence in oil and gas exploration.</p></div>\",\"PeriodicalId\":100124,\"journal\":{\"name\":\"Artificial Intelligence in Geosciences\",\"volume\":\"5 \",\"pages\":\"Article 100070\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S266654412400011X/pdfft?md5=ab04eebe079fb967d62413622001e5fb&pid=1-s2.0-S266654412400011X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence in Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266654412400011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266654412400011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的机器学习方法,通过使用损失函数将岩石物理信息与神经网络相结合,改进测井对地层的评估。岩石物理信息可以是具体的测井响应方程,也可以是测井数据与储层参数之间的抽象关系。我们使用两个数据集比较了我们方法的性能,并评估了多任务学习、模型结构、迁移学习和岩石物理信息机器学习(PIML)的影响。实验结果表明,PIML 能显著提高地层评估的性能,而且残差神经网络的结构是纳入岩石约束条件的最佳结构。此外,PIML 对噪声的敏感度较低。这些研究结果表明,将数据驱动的机器学习与岩石物理机制相结合,对于人工智能在油气勘探中的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reservoir evaluation using petrophysics informed machine learning: A case study

We propose a novel machine learning approach to improve the formation evaluation from logs by integrating petrophysical information with neural networks using a loss function. The petrophysical information can either be specific logging response equations or abstract relationships between logging data and reservoir parameters. We compare our method's performances using two datasets and evaluate the influences of multi-task learning, model structure, transfer learning, and petrophysics informed machine learning (PIML). Our experiments demonstrate that PIML significantly enhances the performance of formation evaluation, and the structure of residual neural network is optimal for incorporating petrophysical constraints. Moreover, PIML is less sensitive to noise. These findings indicate that it is crucial to integrate data-driven machine learning with petrophysical mechanism for the application of artificial intelligence in oil and gas exploration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信