利用机器学习模型对土坝渗流进行预测

Issam Rehamnia , Ahmed Mohammed Sami Al-Janabi , Saad Sh. Sammen , Binh Thai Pham , Indra Prakash
{"title":"利用机器学习模型对土坝渗流进行预测","authors":"Issam Rehamnia ,&nbsp;Ahmed Mohammed Sami Al-Janabi ,&nbsp;Saad Sh. Sammen ,&nbsp;Binh Thai Pham ,&nbsp;Indra Prakash","doi":"10.1016/j.hydres.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, three machine learning models, namely, the Multilayer Perceptron Neural Networks (MLPNN), the Generalized Regression Neural Networks (GRNN) and the Radial Basis Function Neural Networks (RBFNN) were used for predicting seepage flow through an earthfill dam. Moreover, obtained results were compared with those obtained from the standard Multiple Linear Regression (MLR). The three models were developed using piezometer elevations observed at seven different piezometers, in addition to the related reservoir water level and the periodicity for a period of seven years. Obtained results indicated that the GRNN model had substantially better prediction performance than the RBFNN, MLPNN, and the standard MLR models with statistical values of coefficient of correlation <em>R</em> = 0.981, root mean square error RMSE = 0.386 L/s, and a mean absolute error MAE = 0.95 L/s. Moreover, including the periodicity factors improves prediction accuracy of the machine learning models.</p></div>","PeriodicalId":100615,"journal":{"name":"HydroResearch","volume":"7 ","pages":"Pages 131-139"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2589757824000052/pdfft?md5=70d9f845931b57c9e9de24be720104cf&pid=1-s2.0-S2589757824000052-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Prediction of seepage flow through earthfill dams using machine learning models\",\"authors\":\"Issam Rehamnia ,&nbsp;Ahmed Mohammed Sami Al-Janabi ,&nbsp;Saad Sh. Sammen ,&nbsp;Binh Thai Pham ,&nbsp;Indra Prakash\",\"doi\":\"10.1016/j.hydres.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this study, three machine learning models, namely, the Multilayer Perceptron Neural Networks (MLPNN), the Generalized Regression Neural Networks (GRNN) and the Radial Basis Function Neural Networks (RBFNN) were used for predicting seepage flow through an earthfill dam. Moreover, obtained results were compared with those obtained from the standard Multiple Linear Regression (MLR). The three models were developed using piezometer elevations observed at seven different piezometers, in addition to the related reservoir water level and the periodicity for a period of seven years. Obtained results indicated that the GRNN model had substantially better prediction performance than the RBFNN, MLPNN, and the standard MLR models with statistical values of coefficient of correlation <em>R</em> = 0.981, root mean square error RMSE = 0.386 L/s, and a mean absolute error MAE = 0.95 L/s. Moreover, including the periodicity factors improves prediction accuracy of the machine learning models.</p></div>\",\"PeriodicalId\":100615,\"journal\":{\"name\":\"HydroResearch\",\"volume\":\"7 \",\"pages\":\"Pages 131-139\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2589757824000052/pdfft?md5=70d9f845931b57c9e9de24be720104cf&pid=1-s2.0-S2589757824000052-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"HydroResearch\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589757824000052\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"HydroResearch","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589757824000052","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究采用了三种机器学习模型,即多层感知器神经网络 (MLPNN)、广义回归神经网络 (GRNN) 和径向基函数神经网络 (RBFNN),用于预测土坝的渗流。此外,还将获得的结果与标准多元线性回归(MLR)获得的结果进行了比较。这三个模型是利用在七个不同的压强计上观测到的压强计高程以及相关的水库水位和七年的周期建立的。结果表明,GRNN 模型的预测性能大大优于 RBFNN、MLPNN 和标准 MLR 模型,相关系数 R = 0.981,均方根误差 RMSE = 0.386 L/s,平均绝对误差 MAE = 0.95 L/s。此外,加入周期因素还能提高机器学习模型的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction of seepage flow through earthfill dams using machine learning models

In this study, three machine learning models, namely, the Multilayer Perceptron Neural Networks (MLPNN), the Generalized Regression Neural Networks (GRNN) and the Radial Basis Function Neural Networks (RBFNN) were used for predicting seepage flow through an earthfill dam. Moreover, obtained results were compared with those obtained from the standard Multiple Linear Regression (MLR). The three models were developed using piezometer elevations observed at seven different piezometers, in addition to the related reservoir water level and the periodicity for a period of seven years. Obtained results indicated that the GRNN model had substantially better prediction performance than the RBFNN, MLPNN, and the standard MLR models with statistical values of coefficient of correlation R = 0.981, root mean square error RMSE = 0.386 L/s, and a mean absolute error MAE = 0.95 L/s. Moreover, including the periodicity factors improves prediction accuracy of the machine learning models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信