Mankagna Albert Diompy, Alhousseynou Ba, Andé Souleye Diabang
{"title":"关于 S C D F 模块","authors":"Mankagna Albert Diompy, Alhousseynou Ba, Andé Souleye Diabang","doi":"10.61091/um118-06","DOIUrl":null,"url":null,"abstract":"A module M over a commutative ring is termed an SCDF-module if every Dedekind finite object in σ[M] is finitely cogenerated. Utilizing this concept, we explore several properties and characterize various types of SCDF-modules. These include local SCDF-modules, finitely generated $SCDF$-modules, and hollow SCDF-modules with Rad(M)=0≠M. Additionally, we examine QF SCDF-odules in the context of duo-ring.","PeriodicalId":49389,"journal":{"name":"Utilitas Mathematica","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On S C D F -Modules\",\"authors\":\"Mankagna Albert Diompy, Alhousseynou Ba, Andé Souleye Diabang\",\"doi\":\"10.61091/um118-06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A module M over a commutative ring is termed an SCDF-module if every Dedekind finite object in σ[M] is finitely cogenerated. Utilizing this concept, we explore several properties and characterize various types of SCDF-modules. These include local SCDF-modules, finitely generated $SCDF$-modules, and hollow SCDF-modules with Rad(M)=0≠M. Additionally, we examine QF SCDF-odules in the context of duo-ring.\",\"PeriodicalId\":49389,\"journal\":{\"name\":\"Utilitas Mathematica\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Utilitas Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61091/um118-06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Utilitas Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61091/um118-06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
A module M over a commutative ring is termed an SCDF-module if every Dedekind finite object in σ[M] is finitely cogenerated. Utilizing this concept, we explore several properties and characterize various types of SCDF-modules. These include local SCDF-modules, finitely generated $SCDF$-modules, and hollow SCDF-modules with Rad(M)=0≠M. Additionally, we examine QF SCDF-odules in the context of duo-ring.
期刊介绍:
Utilitas Mathematica publishes papers in all areas of statistical designs and combinatorial mathematics, including graph theory, design theory, extremal combinatorics, enumeration, algebraic combinatorics, combinatorial optimization, Ramsey theory, automorphism groups, coding theory, finite geometries, chemical graph theory, etc., as well as the closely related area of number-theoretic polynomials for enumeration.