W 树 W T ( n , k ) 的奇数优美标签及其二分联盟

Q4 Mathematics
Abaid ur Rehman Virk, A. Riasat
{"title":"W 树 W T ( n , k ) 的奇数优美标签及其二分联盟","authors":"Abaid ur Rehman Virk, A. Riasat","doi":"10.61091/um118-05","DOIUrl":null,"url":null,"abstract":"Let G=(V(G),E(G)) be a graph with p vertices and q edges. A graph G of size q is said to be odd graceful if there exists an injection λ:V(G)→0,1,2,…,2q−1 such that assigning each edge xy the label or weight |λ(x)–λ(y)| results in the set of edge labels being 1,3,5,…,2q−1. This concept was introduced in 1991 by Gananajothi. In this paper, we examine the odd graceful labeling of the W-tree, denoted as WT(n,k).","PeriodicalId":49389,"journal":{"name":"Utilitas Mathematica","volume":"231 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Odd Graceful Labeling of W -Tree W T ( n , k ) and its Disjoint Union\",\"authors\":\"Abaid ur Rehman Virk, A. Riasat\",\"doi\":\"10.61091/um118-05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G=(V(G),E(G)) be a graph with p vertices and q edges. A graph G of size q is said to be odd graceful if there exists an injection λ:V(G)→0,1,2,…,2q−1 such that assigning each edge xy the label or weight |λ(x)–λ(y)| results in the set of edge labels being 1,3,5,…,2q−1. This concept was introduced in 1991 by Gananajothi. In this paper, we examine the odd graceful labeling of the W-tree, denoted as WT(n,k).\",\"PeriodicalId\":49389,\"journal\":{\"name\":\"Utilitas Mathematica\",\"volume\":\"231 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Utilitas Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.61091/um118-05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Utilitas Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.61091/um118-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

假设 G=(V(G),E(G)) 是一个有 p 个顶点和 q 条边的图。如果存在注入λ:V(G)→0,1,2,......,2q-1,给每条边 xy 赋上标签或权重|λ(x)-λ(y)|,结果边标签集为 1,3,5,......,2q-1,那么大小为 q 的图 G 称为奇数优美图。这一概念由 Gananajothi 于 1991 年提出。在本文中,我们将研究 W 树的奇数优美标签,记为 WT(n,k)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Odd Graceful Labeling of W -Tree W T ( n , k ) and its Disjoint Union
Let G=(V(G),E(G)) be a graph with p vertices and q edges. A graph G of size q is said to be odd graceful if there exists an injection λ:V(G)→0,1,2,…,2q−1 such that assigning each edge xy the label or weight |λ(x)–λ(y)| results in the set of edge labels being 1,3,5,…,2q−1. This concept was introduced in 1991 by Gananajothi. In this paper, we examine the odd graceful labeling of the W-tree, denoted as WT(n,k).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Utilitas Mathematica
Utilitas Mathematica 数学-统计学与概率论
CiteScore
0.50
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Utilitas Mathematica publishes papers in all areas of statistical designs and combinatorial mathematics, including graph theory, design theory, extremal combinatorics, enumeration, algebraic combinatorics, combinatorial optimization, Ramsey theory, automorphism groups, coding theory, finite geometries, chemical graph theory, etc., as well as the closely related area of number-theoretic polynomials for enumeration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信