模型性能评估:用于鲜肉检测的 VGG19 和 Dense201

Djarot Hindarto
{"title":"模型性能评估:用于鲜肉检测的 VGG19 和 Dense201","authors":"Djarot Hindarto","doi":"10.33395/sinkron.v9i1.13247","DOIUrl":null,"url":null,"abstract":"To guarantee consumer safety and meet quality expectations, accurate detection of meat quality is a critical component of the food industry. The objective of this research endeavor is to assess and contrast the fresh meat detection capabilities of two distinct artificial neural network architectures, denoted as Dense201 and VGG19. Automated systems that can identify vital qualities in fresh meat, including color, texture, and cleanliness, have become feasible due to the development of image processing technology. For this reason, however, there are still few direct comparisons between various architectures of artificial neural networks, particularly VGG19 and Dense201. Comparing and contrasting the performance of both models in identifying the quality of meat from visual images, this study attempts to fill this void. Utilizing a vast dataset containing a variety of fresh meats exhibiting substantial visible variations constituted the research methodology. The assessment was conducted by examining the efficacy of both models in determining the quality of meat using established performance metrics, including accuracy, precision, recall, and F1-score. Regarding the detection of fresh meat, it is anticipated that the findings of this study will offer a comprehensive understanding of the benefits and drawbacks associated with every artificial neural network architecture. Contributing to a greater comprehension of the application of precise and efficient meat detection technology, this study also furnishes the food industry with a foundation for determining which model best meets the requirements of meat quality detection on a larger production scale.","PeriodicalId":34046,"journal":{"name":"Sinkron","volume":" 14","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Performance Evaluation: VGG19 and Dense201 for Fresh Meat Detection\",\"authors\":\"Djarot Hindarto\",\"doi\":\"10.33395/sinkron.v9i1.13247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To guarantee consumer safety and meet quality expectations, accurate detection of meat quality is a critical component of the food industry. The objective of this research endeavor is to assess and contrast the fresh meat detection capabilities of two distinct artificial neural network architectures, denoted as Dense201 and VGG19. Automated systems that can identify vital qualities in fresh meat, including color, texture, and cleanliness, have become feasible due to the development of image processing technology. For this reason, however, there are still few direct comparisons between various architectures of artificial neural networks, particularly VGG19 and Dense201. Comparing and contrasting the performance of both models in identifying the quality of meat from visual images, this study attempts to fill this void. Utilizing a vast dataset containing a variety of fresh meats exhibiting substantial visible variations constituted the research methodology. The assessment was conducted by examining the efficacy of both models in determining the quality of meat using established performance metrics, including accuracy, precision, recall, and F1-score. Regarding the detection of fresh meat, it is anticipated that the findings of this study will offer a comprehensive understanding of the benefits and drawbacks associated with every artificial neural network architecture. Contributing to a greater comprehension of the application of precise and efficient meat detection technology, this study also furnishes the food industry with a foundation for determining which model best meets the requirements of meat quality detection on a larger production scale.\",\"PeriodicalId\":34046,\"journal\":{\"name\":\"Sinkron\",\"volume\":\" 14\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sinkron\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33395/sinkron.v9i1.13247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sinkron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33395/sinkron.v9i1.13247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为保证消费者安全并满足质量期望,准确检测肉类质量是食品工业的关键组成部分。这项研究的目的是评估和对比两种不同的人工神经网络架构(Dense201 和 VGG19)的鲜肉检测能力。随着图像处理技术的发展,能够识别鲜肉重要品质(包括颜色、质地和清洁度)的自动化系统已经变得可行。然而,由于这个原因,各种人工神经网络架构之间的直接比较仍然很少,特别是 VGG19 和 Dense201。本研究试图通过比较和对比这两种模型在从视觉图像中识别肉质方面的性能来填补这一空白。研究方法是利用一个包含各种新鲜肉类的庞大数据集,这些肉类表现出明显的差异。通过使用既定的性能指标,包括准确度、精确度、召回率和 F1 分数,对两种模型在确定肉类质量方面的功效进行了评估。关于鲜肉检测,预计本研究的结果将有助于全面了解与每种人工神经网络架构相关的优点和缺点。这项研究有助于更好地理解精确、高效的肉类检测技术的应用,也为食品工业提供了一个基础,以确定哪种模型最能满足更大生产规模的肉类质量检测要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Performance Evaluation: VGG19 and Dense201 for Fresh Meat Detection
To guarantee consumer safety and meet quality expectations, accurate detection of meat quality is a critical component of the food industry. The objective of this research endeavor is to assess and contrast the fresh meat detection capabilities of two distinct artificial neural network architectures, denoted as Dense201 and VGG19. Automated systems that can identify vital qualities in fresh meat, including color, texture, and cleanliness, have become feasible due to the development of image processing technology. For this reason, however, there are still few direct comparisons between various architectures of artificial neural networks, particularly VGG19 and Dense201. Comparing and contrasting the performance of both models in identifying the quality of meat from visual images, this study attempts to fill this void. Utilizing a vast dataset containing a variety of fresh meats exhibiting substantial visible variations constituted the research methodology. The assessment was conducted by examining the efficacy of both models in determining the quality of meat using established performance metrics, including accuracy, precision, recall, and F1-score. Regarding the detection of fresh meat, it is anticipated that the findings of this study will offer a comprehensive understanding of the benefits and drawbacks associated with every artificial neural network architecture. Contributing to a greater comprehension of the application of precise and efficient meat detection technology, this study also furnishes the food industry with a foundation for determining which model best meets the requirements of meat quality detection on a larger production scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
204
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信