利用液相色谱-串联质谱法同时定量表型鸡尾酒中结构相关探针药物的生物分析方法优化

Machel Leuschner, Duncan Cromarty
{"title":"利用液相色谱-串联质谱法同时定量表型鸡尾酒中结构相关探针药物的生物分析方法优化","authors":"Machel Leuschner, Duncan Cromarty","doi":"10.1002/sscp.202300241","DOIUrl":null,"url":null,"abstract":"The physicochemical diversity of the structurally related aromatic probe drugs, used together in a drug cocktail to assess metabolic and transport phenotypes, require optimized analytical procedures for simultaneous quantification. The analytical conditions can greatly influence the analyte selectivity, retention, stability, and ultimately the robustness of the method. The aim of this study was to assess the selectivity of the structurally related ionizable analytes between the commonly used C18 column chemistry and an alternative biphenyl column chemistry as well as the influence of changes in the analytical conditions on method robustness using liquid chromatography‐tandem mass spectrometry. A repeated measure two‐factor analysis of variance with Geisser‐Greenhouse correction was used to determine statistical significance. The results showed that a biphenyl stationary phase in combination with methanol as the organic eluent, could provide improved resolution and analyte selectivity. Changes in analytical conditions caused statistically significant variation in the retention behavior, selectivity, column efficiency, and sensitivity of the analytes of interest The robustness experiment confirmed the importance of controlling analytical conditions to ensure the reproducibility and reliability of the quantitative method.","PeriodicalId":508518,"journal":{"name":"SEPARATION SCIENCE PLUS","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bioanalytical method optimization for simultaneous quantification of structurally related probe drugs in a phenotyping cocktail using liquid chromatography‐tandem mass spectrometry\",\"authors\":\"Machel Leuschner, Duncan Cromarty\",\"doi\":\"10.1002/sscp.202300241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The physicochemical diversity of the structurally related aromatic probe drugs, used together in a drug cocktail to assess metabolic and transport phenotypes, require optimized analytical procedures for simultaneous quantification. The analytical conditions can greatly influence the analyte selectivity, retention, stability, and ultimately the robustness of the method. The aim of this study was to assess the selectivity of the structurally related ionizable analytes between the commonly used C18 column chemistry and an alternative biphenyl column chemistry as well as the influence of changes in the analytical conditions on method robustness using liquid chromatography‐tandem mass spectrometry. A repeated measure two‐factor analysis of variance with Geisser‐Greenhouse correction was used to determine statistical significance. The results showed that a biphenyl stationary phase in combination with methanol as the organic eluent, could provide improved resolution and analyte selectivity. Changes in analytical conditions caused statistically significant variation in the retention behavior, selectivity, column efficiency, and sensitivity of the analytes of interest The robustness experiment confirmed the importance of controlling analytical conditions to ensure the reproducibility and reliability of the quantitative method.\",\"PeriodicalId\":508518,\"journal\":{\"name\":\"SEPARATION SCIENCE PLUS\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SEPARATION SCIENCE PLUS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sscp.202300241\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEPARATION SCIENCE PLUS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sscp.202300241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结构相关的芳香族探针药物在鸡尾酒药物中一起使用以评估代谢和转运表型,其物理化学多样性要求采用优化的分析程序进行同时定量。分析条件会在很大程度上影响分析物的选择性、保留率、稳定性,并最终影响分析方法的稳健性。本研究的目的是利用液相色谱-串联质谱法评估常用的 C18 色谱柱和替代的联苯色谱柱对结构相关的可电离分析物的选择性,以及分析条件的变化对方法稳健性的影响。采用重复测量双因素方差分析和 Geisser-Greenhouse 校正来确定统计意义。结果表明,联苯固定相结合甲醇作为有机洗脱液可以提高分辨率和分析选择性。分析条件的改变会导致相关分析物的保留行为、选择性、柱效和灵敏度发生统计学意义上的显著变化。稳健性实验证实了控制分析条件对确保定量方法的重现性和可靠性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bioanalytical method optimization for simultaneous quantification of structurally related probe drugs in a phenotyping cocktail using liquid chromatography‐tandem mass spectrometry
The physicochemical diversity of the structurally related aromatic probe drugs, used together in a drug cocktail to assess metabolic and transport phenotypes, require optimized analytical procedures for simultaneous quantification. The analytical conditions can greatly influence the analyte selectivity, retention, stability, and ultimately the robustness of the method. The aim of this study was to assess the selectivity of the structurally related ionizable analytes between the commonly used C18 column chemistry and an alternative biphenyl column chemistry as well as the influence of changes in the analytical conditions on method robustness using liquid chromatography‐tandem mass spectrometry. A repeated measure two‐factor analysis of variance with Geisser‐Greenhouse correction was used to determine statistical significance. The results showed that a biphenyl stationary phase in combination with methanol as the organic eluent, could provide improved resolution and analyte selectivity. Changes in analytical conditions caused statistically significant variation in the retention behavior, selectivity, column efficiency, and sensitivity of the analytes of interest The robustness experiment confirmed the importance of controlling analytical conditions to ensure the reproducibility and reliability of the quantitative method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信