{"title":"新型量子群 Uq(𝔰𝔩2∗) 的霍普夫 PBW 变形和变形前投影代数","authors":"Yongjun Xu, Jialei Chen","doi":"10.1142/s0129167x24500034","DOIUrl":null,"url":null,"abstract":"We classify all the Hopf PBW-deformations of a new type quantum group [Formula: see text] from which the classical Drinfeld–Jimbo quantum group [Formula: see text] can arise as an almost unique nontrivial one. Different from the [Formula: see text] case, the category of finite-dimensional [Formula: see text]-modules is non-semisimple. We establish a block decomposition theorem for the category [Formula: see text] of finite-dimensional weight modules of [Formula: see text]. On the level of tensor category, we show that [Formula: see text] (respectively, the category [Formula: see text] of finite-dimensional [Formula: see text]-modules) can be realized via (respectively, deformed) preprojective algebras of Dynkin type [Formula: see text].","PeriodicalId":509585,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hopf PBW-deformations of a new type quantum group Uq(𝔰𝔩2∗) and deformed preprojective algebras\",\"authors\":\"Yongjun Xu, Jialei Chen\",\"doi\":\"10.1142/s0129167x24500034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We classify all the Hopf PBW-deformations of a new type quantum group [Formula: see text] from which the classical Drinfeld–Jimbo quantum group [Formula: see text] can arise as an almost unique nontrivial one. Different from the [Formula: see text] case, the category of finite-dimensional [Formula: see text]-modules is non-semisimple. We establish a block decomposition theorem for the category [Formula: see text] of finite-dimensional weight modules of [Formula: see text]. On the level of tensor category, we show that [Formula: see text] (respectively, the category [Formula: see text] of finite-dimensional [Formula: see text]-modules) can be realized via (respectively, deformed) preprojective algebras of Dynkin type [Formula: see text].\",\"PeriodicalId\":509585,\"journal\":{\"name\":\"International Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129167x24500034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129167x24500034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hopf PBW-deformations of a new type quantum group Uq(𝔰𝔩2∗) and deformed preprojective algebras
We classify all the Hopf PBW-deformations of a new type quantum group [Formula: see text] from which the classical Drinfeld–Jimbo quantum group [Formula: see text] can arise as an almost unique nontrivial one. Different from the [Formula: see text] case, the category of finite-dimensional [Formula: see text]-modules is non-semisimple. We establish a block decomposition theorem for the category [Formula: see text] of finite-dimensional weight modules of [Formula: see text]. On the level of tensor category, we show that [Formula: see text] (respectively, the category [Formula: see text] of finite-dimensional [Formula: see text]-modules) can be realized via (respectively, deformed) preprojective algebras of Dynkin type [Formula: see text].