{"title":"基于有机场效应晶体管的神经形态系统制造与功能的最新进展","authors":"Yaqian Liu, Minrui Lian, Wei Chen, Huipeng Chen","doi":"10.1088/2631-7990/ad1e25","DOIUrl":null,"url":null,"abstract":"\n The development of various artificial electronics and machines would explosive increase the information and data, which need to be processed in-situ remediation. Bioinspired synapse devices can store and process signals in a parallel way, then improve fault tolerance and decrease the power consumption of artificial systems. The organic field effect transistor (OFET) is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices. In this review, the organic semiconductor materials, structures and fabrication, and different artificial sensory perception systems functions based on micro-sized neuromorphic OFET devices are summarized. Finally, a summary and challenges of neuromorphic OFET devices are provided. This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems, which would provide a reference for the achievement of neuromorphic systems in future bioinspired electronics.","PeriodicalId":502508,"journal":{"name":"International Journal of Extreme Manufacturing","volume":" 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistor\",\"authors\":\"Yaqian Liu, Minrui Lian, Wei Chen, Huipeng Chen\",\"doi\":\"10.1088/2631-7990/ad1e25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The development of various artificial electronics and machines would explosive increase the information and data, which need to be processed in-situ remediation. Bioinspired synapse devices can store and process signals in a parallel way, then improve fault tolerance and decrease the power consumption of artificial systems. The organic field effect transistor (OFET) is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices. In this review, the organic semiconductor materials, structures and fabrication, and different artificial sensory perception systems functions based on micro-sized neuromorphic OFET devices are summarized. Finally, a summary and challenges of neuromorphic OFET devices are provided. This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems, which would provide a reference for the achievement of neuromorphic systems in future bioinspired electronics.\",\"PeriodicalId\":502508,\"journal\":{\"name\":\"International Journal of Extreme Manufacturing\",\"volume\":\" 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Extreme Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2631-7990/ad1e25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/ad1e25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recent advances in fabrication and functions of neuromorphic system based on organic field effect transistor
The development of various artificial electronics and machines would explosive increase the information and data, which need to be processed in-situ remediation. Bioinspired synapse devices can store and process signals in a parallel way, then improve fault tolerance and decrease the power consumption of artificial systems. The organic field effect transistor (OFET) is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices. In this review, the organic semiconductor materials, structures and fabrication, and different artificial sensory perception systems functions based on micro-sized neuromorphic OFET devices are summarized. Finally, a summary and challenges of neuromorphic OFET devices are provided. This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems, which would provide a reference for the achievement of neuromorphic systems in future bioinspired electronics.