癌症治疗中主要金属和类金属的调查

IF 3.1 4区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR
Irena Kostova
{"title":"癌症治疗中主要金属和类金属的调查","authors":"Irena Kostova","doi":"10.3390/inorganics12010029","DOIUrl":null,"url":null,"abstract":"Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups resulted in the development of numerous metal-based compounds featuring different biologically active organic ligands in order to modulate their bioactivity. Along with the main representatives as potential therapeutic agents, such as the complexes Pt(II)/Pt(IV), Pd(II), Ru(II)/Ru(III), Ag(I), Au(I)/Au(III), Ti(IV), V(IV) and Ga(III), many other transition metal and lanthanide complexes possessing antiproliferative activity are widely discussed in the literature. However, such drugs remain outside the scope of this review. The main purpose of the current study is to review the potential activity of main group metal- and metalloid-based complexes against the most common cancer cell types, such as carcinomas (lung, liver, breast, kidney, gastric, colorectal, bladder, ovarian, cervical, prostate, etc.); sarcomas; blastomas; lymphomas; multiple myeloma; and melanoma. Overcoming the long disregard of organometallic compounds of metals and metalloids from the main groups, a growing number of emerging anticancer agents remarkably prove this field offers an extensive variety of new options for the design of innovative unexplored chemopharmaceutics. Moreover, some of the metal complexes and organometallic compounds from these elements can exhibit entirely different, specific modes of action and biological targets. Obviously, exploitation of their distinct properties deserves more attention.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Survey of Main Group Metals and Metalloids in Cancer Treatment\",\"authors\":\"Irena Kostova\",\"doi\":\"10.3390/inorganics12010029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups resulted in the development of numerous metal-based compounds featuring different biologically active organic ligands in order to modulate their bioactivity. Along with the main representatives as potential therapeutic agents, such as the complexes Pt(II)/Pt(IV), Pd(II), Ru(II)/Ru(III), Ag(I), Au(I)/Au(III), Ti(IV), V(IV) and Ga(III), many other transition metal and lanthanide complexes possessing antiproliferative activity are widely discussed in the literature. However, such drugs remain outside the scope of this review. The main purpose of the current study is to review the potential activity of main group metal- and metalloid-based complexes against the most common cancer cell types, such as carcinomas (lung, liver, breast, kidney, gastric, colorectal, bladder, ovarian, cervical, prostate, etc.); sarcomas; blastomas; lymphomas; multiple myeloma; and melanoma. Overcoming the long disregard of organometallic compounds of metals and metalloids from the main groups, a growing number of emerging anticancer agents remarkably prove this field offers an extensive variety of new options for the design of innovative unexplored chemopharmaceutics. Moreover, some of the metal complexes and organometallic compounds from these elements can exhibit entirely different, specific modes of action and biological targets. Obviously, exploitation of their distinct properties deserves more attention.\",\"PeriodicalId\":13572,\"journal\":{\"name\":\"Inorganics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.3390/inorganics12010029\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics12010029","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在所有主要疾病中,癌症是导致人类死亡的主要原因之一。在用于癌症治疗和诊断的现有细胞毒性候选药物库中,金属基复合物被认为是最有前途的重要组成部分。在许多科研小组的努力下,开发出了许多具有不同生物活性有机配体的金属基化合物,以调节其生物活性。除了作为潜在治疗药物的主要代表,如铂(II)/铂(IV)、钯(II)、钌(II)/钌(III)、银(I)、金(I)/金(III)、钛(IV)、钒(IV)和镓(III)等配合物之外,文献中还广泛讨论了许多其他具有抗增殖活性的过渡金属和镧系配合物。然而,这些药物仍然不在本综述的研究范围之内。本研究的主要目的是综述主族金属和类金属配合物对最常见癌细胞类型的潜在活性,如癌(肺癌、肝癌、乳腺癌、肾癌、胃癌、结直肠癌、膀胱癌、卵巢癌、宫颈癌、前列腺癌等)、肉瘤、胚芽肿、淋巴瘤、多发性骨髓瘤和黑色素瘤。长期以来,人们一直忽视金属和类金属的有机金属化合物,但越来越多的新兴抗癌药物证明,这一领域为设计创新的、尚未开发的化学制药提供了多种新选择。此外,这些元素的一些金属络合物和有机金属化合物可以表现出完全不同的特定作用模式和生物靶标。显然,利用它们的独特性质值得更多关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Survey of Main Group Metals and Metalloids in Cancer Treatment
Cancer is one of the leading causes of human death among all major diseases. Metal-based complexes are considered as the most promising vital part in the existing arsenal of cytotoxic candidates used in cancer therapy and diagnostics. The efforts of many scientific groups resulted in the development of numerous metal-based compounds featuring different biologically active organic ligands in order to modulate their bioactivity. Along with the main representatives as potential therapeutic agents, such as the complexes Pt(II)/Pt(IV), Pd(II), Ru(II)/Ru(III), Ag(I), Au(I)/Au(III), Ti(IV), V(IV) and Ga(III), many other transition metal and lanthanide complexes possessing antiproliferative activity are widely discussed in the literature. However, such drugs remain outside the scope of this review. The main purpose of the current study is to review the potential activity of main group metal- and metalloid-based complexes against the most common cancer cell types, such as carcinomas (lung, liver, breast, kidney, gastric, colorectal, bladder, ovarian, cervical, prostate, etc.); sarcomas; blastomas; lymphomas; multiple myeloma; and melanoma. Overcoming the long disregard of organometallic compounds of metals and metalloids from the main groups, a growing number of emerging anticancer agents remarkably prove this field offers an extensive variety of new options for the design of innovative unexplored chemopharmaceutics. Moreover, some of the metal complexes and organometallic compounds from these elements can exhibit entirely different, specific modes of action and biological targets. Obviously, exploitation of their distinct properties deserves more attention.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganics
Inorganics Chemistry-Inorganic Chemistry
CiteScore
2.80
自引率
10.30%
发文量
193
审稿时长
6 weeks
期刊介绍: Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信