K. I. Hernández-Figueroa, Esteban Sánchez, C. A. Ramírez-Estrada, Julio C. Anchondo-Páez, D. Ojeda-Barrios, Sandra PÉREZ-ÁLVAREZ
{"title":"生物刺激剂在中度和重度水分胁迫下对青豆的功效和不同的生理生化反应","authors":"K. I. Hernández-Figueroa, Esteban Sánchez, C. A. Ramírez-Estrada, Julio C. Anchondo-Páez, D. Ojeda-Barrios, Sandra PÉREZ-ÁLVAREZ","doi":"10.3390/crops4010003","DOIUrl":null,"url":null,"abstract":"Water stress is one of the main factors affecting the development of agricultural crops. An innovative alternative to improve tolerance to water stress is the application of biostimulants. In the present study, the efficacy and physiological and biochemical responses of different biostimulants were evaluated in beans under moderate and severe stress. The treatments consisted of three types of irrigation: FC100, without water stress; FC75, irrigation reduced by 25% (moderate water stress); and FC50, irrigation reduced by 50% (severe water stress). In the treatments with water deficits, foliar biostimulants were applied: zinc oxide nanoparticles plus chitosan, Codasil®, Osmoplant®, Stimplex® and salicylic acid. Foliar application of ZnO + chitosan nanoparticles benefited biomass accumulation and yield under moderate water stress (FC75) and Codasil® and Osmoplant® under severe water stress (FC50). Proline, free sugars and gas exchange were higher with the application of ZnO + chitosan nanoparticles under moderate water stress and with Codasil® and Osmoplant® under severe water stress. Depending on the severity of water stress, ZnO + chitosan nanoparticles, Codasil® and Osmoplant® are viable products to increase tolerance in green bean cv. Strike plants.","PeriodicalId":505308,"journal":{"name":"Crops","volume":" 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficacy and Differential Physiological–Biochemical Response of Biostimulants in Green Beans Subjected to Moderate and Severe Water Stress\",\"authors\":\"K. I. Hernández-Figueroa, Esteban Sánchez, C. A. Ramírez-Estrada, Julio C. Anchondo-Páez, D. Ojeda-Barrios, Sandra PÉREZ-ÁLVAREZ\",\"doi\":\"10.3390/crops4010003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water stress is one of the main factors affecting the development of agricultural crops. An innovative alternative to improve tolerance to water stress is the application of biostimulants. In the present study, the efficacy and physiological and biochemical responses of different biostimulants were evaluated in beans under moderate and severe stress. The treatments consisted of three types of irrigation: FC100, without water stress; FC75, irrigation reduced by 25% (moderate water stress); and FC50, irrigation reduced by 50% (severe water stress). In the treatments with water deficits, foliar biostimulants were applied: zinc oxide nanoparticles plus chitosan, Codasil®, Osmoplant®, Stimplex® and salicylic acid. Foliar application of ZnO + chitosan nanoparticles benefited biomass accumulation and yield under moderate water stress (FC75) and Codasil® and Osmoplant® under severe water stress (FC50). Proline, free sugars and gas exchange were higher with the application of ZnO + chitosan nanoparticles under moderate water stress and with Codasil® and Osmoplant® under severe water stress. Depending on the severity of water stress, ZnO + chitosan nanoparticles, Codasil® and Osmoplant® are viable products to increase tolerance in green bean cv. Strike plants.\",\"PeriodicalId\":505308,\"journal\":{\"name\":\"Crops\",\"volume\":\" 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Crops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/crops4010003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/crops4010003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficacy and Differential Physiological–Biochemical Response of Biostimulants in Green Beans Subjected to Moderate and Severe Water Stress
Water stress is one of the main factors affecting the development of agricultural crops. An innovative alternative to improve tolerance to water stress is the application of biostimulants. In the present study, the efficacy and physiological and biochemical responses of different biostimulants were evaluated in beans under moderate and severe stress. The treatments consisted of three types of irrigation: FC100, without water stress; FC75, irrigation reduced by 25% (moderate water stress); and FC50, irrigation reduced by 50% (severe water stress). In the treatments with water deficits, foliar biostimulants were applied: zinc oxide nanoparticles plus chitosan, Codasil®, Osmoplant®, Stimplex® and salicylic acid. Foliar application of ZnO + chitosan nanoparticles benefited biomass accumulation and yield under moderate water stress (FC75) and Codasil® and Osmoplant® under severe water stress (FC50). Proline, free sugars and gas exchange were higher with the application of ZnO + chitosan nanoparticles under moderate water stress and with Codasil® and Osmoplant® under severe water stress. Depending on the severity of water stress, ZnO + chitosan nanoparticles, Codasil® and Osmoplant® are viable products to increase tolerance in green bean cv. Strike plants.