对植物吸收和积累药物后的作用模式介导反应的见解

IF 3.5 Q1 AGRONOMY
Andrea-Lorena Garduño-Jiménez, Laura J. Carter
{"title":"对植物吸收和积累药物后的作用模式介导反应的见解","authors":"Andrea-Lorena Garduño-Jiménez, Laura J. Carter","doi":"10.3389/fagro.2023.1293555","DOIUrl":null,"url":null,"abstract":"The reuse of wastewater to meet irrigation requirements and slurries, sludges and manures as fertilisers to meet crop nutrient demands inadvertently introduces human and veterinary-use pharmaceuticals into the agro-ecosystem. This review synthesises recent research, which has observed sub-lethal effects, following pharmaceutical uptake by plants. Potential links between pharmaceutical mode of action and observed sub-lethal effects in the plant were then examined. Common receptors and biological pathways across species suggests a clear need to integrate plant cellular biology into our understanding of the impacts of pharmaceuticals on important plant functions and processes. To help prioritise future research efforts an analysis of shared mammalian and plant biochemical pathways was undertaken to identify classes of pharmaceuticals which may present a greater risk to key plant functions. These included sulfonylurea antihyperglycemics, steroids, opiods, antipsychotic phenothiazines and pharmaceuticals targeting several neurotransmitters shared between mammals and plants (including beta-blockers, antihistamines and benzodiazepines). Whilst a number of pharmaceutical induced sub-lethal effects have been observed, this review highlights the clear need to study a wider range of pharmaceuticals on a broader range of plant species, including cover crops and wild plants, under realistic exposure scenarios, to fully understand the wider implications of pharmaceutical exposure in agro-ecosystems. State-of-the art omics-techniques offer great potential to understand the mode of action of pharmaceuticals in plants and elucidate links between the pharmaceutical intended mode of action and observed plant effects. In addition, studies under co-stress from pharmaceutical exposure and other stressors such as increased temperatures, drought or pests are lacking and present an urgent research need in the face of feeding a growing population under the threats of climate change.","PeriodicalId":34038,"journal":{"name":"Frontiers in Agronomy","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into mode of action mediated responses following pharmaceutical uptake and accumulation in plants\",\"authors\":\"Andrea-Lorena Garduño-Jiménez, Laura J. Carter\",\"doi\":\"10.3389/fagro.2023.1293555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reuse of wastewater to meet irrigation requirements and slurries, sludges and manures as fertilisers to meet crop nutrient demands inadvertently introduces human and veterinary-use pharmaceuticals into the agro-ecosystem. This review synthesises recent research, which has observed sub-lethal effects, following pharmaceutical uptake by plants. Potential links between pharmaceutical mode of action and observed sub-lethal effects in the plant were then examined. Common receptors and biological pathways across species suggests a clear need to integrate plant cellular biology into our understanding of the impacts of pharmaceuticals on important plant functions and processes. To help prioritise future research efforts an analysis of shared mammalian and plant biochemical pathways was undertaken to identify classes of pharmaceuticals which may present a greater risk to key plant functions. These included sulfonylurea antihyperglycemics, steroids, opiods, antipsychotic phenothiazines and pharmaceuticals targeting several neurotransmitters shared between mammals and plants (including beta-blockers, antihistamines and benzodiazepines). Whilst a number of pharmaceutical induced sub-lethal effects have been observed, this review highlights the clear need to study a wider range of pharmaceuticals on a broader range of plant species, including cover crops and wild plants, under realistic exposure scenarios, to fully understand the wider implications of pharmaceutical exposure in agro-ecosystems. State-of-the art omics-techniques offer great potential to understand the mode of action of pharmaceuticals in plants and elucidate links between the pharmaceutical intended mode of action and observed plant effects. In addition, studies under co-stress from pharmaceutical exposure and other stressors such as increased temperatures, drought or pests are lacking and present an urgent research need in the face of feeding a growing population under the threats of climate change.\",\"PeriodicalId\":34038,\"journal\":{\"name\":\"Frontiers in Agronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Agronomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fagro.2023.1293555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Agronomy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fagro.2023.1293555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

为满足灌溉要求而回用废水,以及为满足作物养分需求而将泥浆、淤泥和粪肥用作肥料,都会无意中将人类和兽医使用的药物引入农业生态系统。本综述综合了最近的研究,这些研究观察到了植物吸收药物后产生的亚致死效应。然后研究了药物作用方式与观察到的植物亚致死效应之间的潜在联系。不同物种的共同受体和生物途径表明,我们显然有必要将植物细胞生物学纳入我们对药物对重要植物功能和过程的影响的理解中。为了帮助确定未来研究工作的优先次序,我们对哺乳动物和植物的共同生化途径进行了分析,以确定可能对植物的关键功能造成更大风险的药物类别。这些药物包括磺酰脲类降血糖药、类固醇、鸦片类、抗精神病吩噻嗪以及针对哺乳动物和植物共有的几种神经递质的药物(包括β-受体阻滞剂、抗组胺药和苯并二氮杂卓)。虽然已经观察到一些药物诱导的亚致死效应,但本综述强调,显然有必要在现实的暴露情景下,对更广泛的植物物种(包括覆盖作物和野生植物)进行更广泛的药物研究,以充分了解农业生态系统中药物暴露的更广泛影响。最先进的全息技术为了解药物在植物体内的作用模式以及阐明药物的预期作用模式与观察到的植物效应之间的联系提供了巨大的潜力。此外,目前还缺乏在药物暴露和其他胁迫因素(如温度升高、干旱或虫害)共同胁迫下进行的研究,面对气候变化威胁下不断增长的人口,这种研究需求十分迫切。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Insights into mode of action mediated responses following pharmaceutical uptake and accumulation in plants
The reuse of wastewater to meet irrigation requirements and slurries, sludges and manures as fertilisers to meet crop nutrient demands inadvertently introduces human and veterinary-use pharmaceuticals into the agro-ecosystem. This review synthesises recent research, which has observed sub-lethal effects, following pharmaceutical uptake by plants. Potential links between pharmaceutical mode of action and observed sub-lethal effects in the plant were then examined. Common receptors and biological pathways across species suggests a clear need to integrate plant cellular biology into our understanding of the impacts of pharmaceuticals on important plant functions and processes. To help prioritise future research efforts an analysis of shared mammalian and plant biochemical pathways was undertaken to identify classes of pharmaceuticals which may present a greater risk to key plant functions. These included sulfonylurea antihyperglycemics, steroids, opiods, antipsychotic phenothiazines and pharmaceuticals targeting several neurotransmitters shared between mammals and plants (including beta-blockers, antihistamines and benzodiazepines). Whilst a number of pharmaceutical induced sub-lethal effects have been observed, this review highlights the clear need to study a wider range of pharmaceuticals on a broader range of plant species, including cover crops and wild plants, under realistic exposure scenarios, to fully understand the wider implications of pharmaceutical exposure in agro-ecosystems. State-of-the art omics-techniques offer great potential to understand the mode of action of pharmaceuticals in plants and elucidate links between the pharmaceutical intended mode of action and observed plant effects. In addition, studies under co-stress from pharmaceutical exposure and other stressors such as increased temperatures, drought or pests are lacking and present an urgent research need in the face of feeding a growing population under the threats of climate change.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Agronomy
Frontiers in Agronomy Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
4.80
自引率
0.00%
发文量
123
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信