从手工到机器

Meng Guo, Lili Han
{"title":"从手工到机器","authors":"Meng Guo, Lili Han","doi":"10.1075/intp.00100.guo","DOIUrl":null,"url":null,"abstract":"\n This study introduces a groundbreaking automated methodology for measuring ear–voice span (EVS) in simultaneous\n interpreting (SI). Traditionally, assessing EVS – a critical temporal metric in SI – has been hampered by labour-intensive and\n time-consuming manual methods that are prone to inconsistency. To overcome these challenges, our research harnesses\n state-of-the-art natural language processing (NLP) technologies, including automatic speech recognition (ASR), sentence boundary\n detection (SBD) and cross-lingual alignment, to automate EVS measurement. We deployed a comprehensive array of NLP models and\n evaluated the automated pipelines on a 20-hour English-to-Portuguese SI corpus which featured 57 varied audio pairings. The\n findings are encouraging: the most effective model combination achieved a median EVS error of less than 0.1 seconds across the\n corpus. Moreover, the automated pipelines exhibited a high level of accuracy, strong correlation and substantial agreement with\n manual measurements when assessing median EVS for individual audio pairs. Despite these satisfactory results, certain challenges\n persist with some NLP models, indicating clear avenues for future research. This study not only introduces a groundbreaking\n approach to large-scale EVS measurement but also propels the automation of process analysis in Interpreting Studies.","PeriodicalId":512697,"journal":{"name":"Interpreting. International Journal of Research and Practice in Interpreting","volume":"207 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From manual to machine\",\"authors\":\"Meng Guo, Lili Han\",\"doi\":\"10.1075/intp.00100.guo\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study introduces a groundbreaking automated methodology for measuring ear–voice span (EVS) in simultaneous\\n interpreting (SI). Traditionally, assessing EVS – a critical temporal metric in SI – has been hampered by labour-intensive and\\n time-consuming manual methods that are prone to inconsistency. To overcome these challenges, our research harnesses\\n state-of-the-art natural language processing (NLP) technologies, including automatic speech recognition (ASR), sentence boundary\\n detection (SBD) and cross-lingual alignment, to automate EVS measurement. We deployed a comprehensive array of NLP models and\\n evaluated the automated pipelines on a 20-hour English-to-Portuguese SI corpus which featured 57 varied audio pairings. The\\n findings are encouraging: the most effective model combination achieved a median EVS error of less than 0.1 seconds across the\\n corpus. Moreover, the automated pipelines exhibited a high level of accuracy, strong correlation and substantial agreement with\\n manual measurements when assessing median EVS for individual audio pairs. Despite these satisfactory results, certain challenges\\n persist with some NLP models, indicating clear avenues for future research. This study not only introduces a groundbreaking\\n approach to large-scale EVS measurement but also propels the automation of process analysis in Interpreting Studies.\",\"PeriodicalId\":512697,\"journal\":{\"name\":\"Interpreting. International Journal of Research and Practice in Interpreting\",\"volume\":\"207 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Interpreting. International Journal of Research and Practice in Interpreting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1075/intp.00100.guo\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interpreting. International Journal of Research and Practice in Interpreting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1075/intp.00100.guo","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种突破性的自动方法,用于测量同声传译(SI)中的耳声跨度(EVS)。EVS 是同声传译中一个重要的时间指标,传统上,评估 EVS 的工作受到劳动密集型和耗时的人工方法的阻碍,这些方法容易出现不一致的情况。为了克服这些挑战,我们的研究利用了最先进的自然语言处理(NLP)技术,包括自动语音识别(ASR)、句子边界检测(SBD)和跨语言对齐,实现了 EVS 测量的自动化。我们部署了一系列全面的 NLP 模型,并在一个 20 小时的英葡 SI 语料库中对自动化管道进行了评估,该语料库包含 57 个不同的音频配对。结果令人鼓舞:在整个语料库中,最有效的模型组合实现了小于 0.1 秒的中位 EVS 误差。此外,在评估单个音频配对的 EVS 中值时,自动管道表现出较高的准确性、较强的相关性以及与人工测量结果的实质性一致。尽管取得了这些令人满意的结果,但一些 NLP 模型仍然面临着某些挑战,这为未来的研究指明了方向。这项研究不仅为大规模 EVS 测量引入了一种开创性的方法,还推动了口译研究过程分析的自动化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From manual to machine
This study introduces a groundbreaking automated methodology for measuring ear–voice span (EVS) in simultaneous interpreting (SI). Traditionally, assessing EVS – a critical temporal metric in SI – has been hampered by labour-intensive and time-consuming manual methods that are prone to inconsistency. To overcome these challenges, our research harnesses state-of-the-art natural language processing (NLP) technologies, including automatic speech recognition (ASR), sentence boundary detection (SBD) and cross-lingual alignment, to automate EVS measurement. We deployed a comprehensive array of NLP models and evaluated the automated pipelines on a 20-hour English-to-Portuguese SI corpus which featured 57 varied audio pairings. The findings are encouraging: the most effective model combination achieved a median EVS error of less than 0.1 seconds across the corpus. Moreover, the automated pipelines exhibited a high level of accuracy, strong correlation and substantial agreement with manual measurements when assessing median EVS for individual audio pairs. Despite these satisfactory results, certain challenges persist with some NLP models, indicating clear avenues for future research. This study not only introduces a groundbreaking approach to large-scale EVS measurement but also propels the automation of process analysis in Interpreting Studies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信