美国肺癌、支气管癌和气管癌死亡率分析研究

Xidan Zhang
{"title":"美国肺癌、支气管癌和气管癌死亡率分析研究","authors":"Xidan Zhang","doi":"10.54254/2753-8818/30/20241024","DOIUrl":null,"url":null,"abstract":"This research delves into an analysis of lung, bronchus, and trachea cancer rates in the United States across genders. Employing the data spanning seven decades (1950-2020) sourced from the Our World in Data website, the study leverages time series modeling techniques, ARIMA and ETS models. The ARIMA methodology initiates with an assessment of data stationarity, followed by differencing procedures to transform the dataset into a non-stationary data. Subsequently, Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots are examined. Last, the ARIMA model is fitted to dissect the mortality rates among males and females. Simultaneously, the ETS model is directly applied to the mortality data of both genders. The components of the ETS model and the check residuals for ETS are delineated. The outcomes reveal the trends: both genders exhibit a discernible decline in lung, bronchus, and trachea cancer death rates over the period. Despite this downward trajectory, the persistent mortality rates underscore the gravity of the issue. This paper advocates for a heightened focus on lung-related cancers. Understanding and addressing these mortality rates are imperative.","PeriodicalId":489336,"journal":{"name":"Theoretical and Natural Science","volume":" 11","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The research of analysis lung, bronchus and trachea cancer death rate in US\",\"authors\":\"Xidan Zhang\",\"doi\":\"10.54254/2753-8818/30/20241024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research delves into an analysis of lung, bronchus, and trachea cancer rates in the United States across genders. Employing the data spanning seven decades (1950-2020) sourced from the Our World in Data website, the study leverages time series modeling techniques, ARIMA and ETS models. The ARIMA methodology initiates with an assessment of data stationarity, followed by differencing procedures to transform the dataset into a non-stationary data. Subsequently, Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots are examined. Last, the ARIMA model is fitted to dissect the mortality rates among males and females. Simultaneously, the ETS model is directly applied to the mortality data of both genders. The components of the ETS model and the check residuals for ETS are delineated. The outcomes reveal the trends: both genders exhibit a discernible decline in lung, bronchus, and trachea cancer death rates over the period. Despite this downward trajectory, the persistent mortality rates underscore the gravity of the issue. This paper advocates for a heightened focus on lung-related cancers. Understanding and addressing these mortality rates are imperative.\",\"PeriodicalId\":489336,\"journal\":{\"name\":\"Theoretical and Natural Science\",\"volume\":\" 11\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical and Natural Science\",\"FirstCategoryId\":\"0\",\"ListUrlMain\":\"https://doi.org/10.54254/2753-8818/30/20241024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Natural Science","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.54254/2753-8818/30/20241024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究深入分析了美国不同性别的肺癌、支气管癌和气管癌发病率。研究采用了来自 "我们的数据世界 "网站的七十年(1950-2020 年)数据,利用了时间序列建模技术、ARIMA 和 ETS 模型。ARIMA 方法首先评估数据的静态性,然后通过差分程序将数据集转换为非静态数据。随后,研究自相关函数(ACF)和部分自相关函数(PACF)图。最后,拟合 ARIMA 模型来分析男性和女性的死亡率。同时,将 ETS 模型直接应用于男女死亡率数据。对 ETS 模型的组成部分和 ETS 的检验残差进行了划分。结果揭示了趋势:在此期间,男女两性的肺癌、支气管癌和气管癌死亡率都出现了明显的下降。尽管呈下降趋势,但持续的死亡率凸显了问题的严重性。本文主张高度关注与肺相关的癌症。了解并解决这些死亡率问题势在必行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The research of analysis lung, bronchus and trachea cancer death rate in US
This research delves into an analysis of lung, bronchus, and trachea cancer rates in the United States across genders. Employing the data spanning seven decades (1950-2020) sourced from the Our World in Data website, the study leverages time series modeling techniques, ARIMA and ETS models. The ARIMA methodology initiates with an assessment of data stationarity, followed by differencing procedures to transform the dataset into a non-stationary data. Subsequently, Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) plots are examined. Last, the ARIMA model is fitted to dissect the mortality rates among males and females. Simultaneously, the ETS model is directly applied to the mortality data of both genders. The components of the ETS model and the check residuals for ETS are delineated. The outcomes reveal the trends: both genders exhibit a discernible decline in lung, bronchus, and trachea cancer death rates over the period. Despite this downward trajectory, the persistent mortality rates underscore the gravity of the issue. This paper advocates for a heightened focus on lung-related cancers. Understanding and addressing these mortality rates are imperative.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信