莱昂纳多

Matteo Turisini, Mirko Cestari, G. Amati
{"title":"莱昂纳多","authors":"Matteo Turisini, Mirko Cestari, G. Amati","doi":"10.17815/jlsrf-8-186","DOIUrl":null,"url":null,"abstract":"A new pre-exascale computer cluster has been designed to foster scientific progress and competitive innovation across European research systems, it is called LEONARDO. This paper describes thegeneral architecture of the system and focuses on the technologies adopted for its GPU-accelerated partition. High density processing elements, fast data movement capabilities and mature software stack collections allow the machine to run intensive workloads in a flexible and scalable way. Scientific applications from traditional High Performance Computing (HPC) as well as emerging Artificial Intelligence (AI) domains can benefit from this large apparatus in terms of time and energy to solution.","PeriodicalId":16282,"journal":{"name":"Journal of large-scale research facilities JLSRF","volume":" 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LEONARDO\",\"authors\":\"Matteo Turisini, Mirko Cestari, G. Amati\",\"doi\":\"10.17815/jlsrf-8-186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new pre-exascale computer cluster has been designed to foster scientific progress and competitive innovation across European research systems, it is called LEONARDO. This paper describes thegeneral architecture of the system and focuses on the technologies adopted for its GPU-accelerated partition. High density processing elements, fast data movement capabilities and mature software stack collections allow the machine to run intensive workloads in a flexible and scalable way. Scientific applications from traditional High Performance Computing (HPC) as well as emerging Artificial Intelligence (AI) domains can benefit from this large apparatus in terms of time and energy to solution.\",\"PeriodicalId\":16282,\"journal\":{\"name\":\"Journal of large-scale research facilities JLSRF\",\"volume\":\" 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of large-scale research facilities JLSRF\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17815/jlsrf-8-186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of large-scale research facilities JLSRF","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17815/jlsrf-8-186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了促进欧洲研究系统的科学进步和竞争性创新,我们设计了一个新的超大规模前计算机集群,它被称为 LEONARDO。本文介绍了该系统的总体架构,并重点介绍了其 GPU 加速分区所采用的技术。高密度的处理元件、快速的数据移动能力和成熟的软件栈集合,使这台机器能够以灵活和可扩展的方式运行密集型工作负载。传统的高性能计算(HPC)以及新兴的人工智能(AI)领域的科学应用都可以从这台大型设备中获益,节省解决问题的时间和精力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
LEONARDO
A new pre-exascale computer cluster has been designed to foster scientific progress and competitive innovation across European research systems, it is called LEONARDO. This paper describes thegeneral architecture of the system and focuses on the technologies adopted for its GPU-accelerated partition. High density processing elements, fast data movement capabilities and mature software stack collections allow the machine to run intensive workloads in a flexible and scalable way. Scientific applications from traditional High Performance Computing (HPC) as well as emerging Artificial Intelligence (AI) domains can benefit from this large apparatus in terms of time and energy to solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信