Jason Sun, Joseph J. Marziale, Amberkee S Haselhuhn, David Salac, James Chen
{"title":"通过直接墨水写入技术实现短纤维增强陶瓷基复合材料的 ICME 框架","authors":"Jason Sun, Joseph J. Marziale, Amberkee S Haselhuhn, David Salac, James Chen","doi":"10.1088/1361-651x/ad1f47","DOIUrl":null,"url":null,"abstract":"\n A manufacturing-driven ICME framework is proposed to model short fiber reinforced ceramic matrix composite via direct ink writing. Currently, there lacks efforts to investigate the effects of properties of short fiber reinforced ceramic matrix composites due to fiber alignment variance. A multi-scale modeling approach is presented to use representative volume elements to capture the homogenized mechanical behavior at various fiber aspect ratio and volume ratio. The orthotropic material properties are mapped to model the printing process. A series of tensile tests simulations show that with 20$^\\circ$ standard deviation in fiber alignment, the fracture plane has the maximum local tensile stress range at 30 degree printing angle. This local tensile stress variation is shown the minimum at 90 degree When the standard deviation increases from 20 degree to 40 degree, the average tensile strength across the fracture plane decreases by 2%, but the stress variations increase 27.6%.","PeriodicalId":503047,"journal":{"name":"Modelling and Simulation in Materials Science and Engineering","volume":" 24","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ICME Framework for Short Fiber Reinforced Ceramic Matrix Composites via Direct Ink Writing\",\"authors\":\"Jason Sun, Joseph J. Marziale, Amberkee S Haselhuhn, David Salac, James Chen\",\"doi\":\"10.1088/1361-651x/ad1f47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A manufacturing-driven ICME framework is proposed to model short fiber reinforced ceramic matrix composite via direct ink writing. Currently, there lacks efforts to investigate the effects of properties of short fiber reinforced ceramic matrix composites due to fiber alignment variance. A multi-scale modeling approach is presented to use representative volume elements to capture the homogenized mechanical behavior at various fiber aspect ratio and volume ratio. The orthotropic material properties are mapped to model the printing process. A series of tensile tests simulations show that with 20$^\\\\circ$ standard deviation in fiber alignment, the fracture plane has the maximum local tensile stress range at 30 degree printing angle. This local tensile stress variation is shown the minimum at 90 degree When the standard deviation increases from 20 degree to 40 degree, the average tensile strength across the fracture plane decreases by 2%, but the stress variations increase 27.6%.\",\"PeriodicalId\":503047,\"journal\":{\"name\":\"Modelling and Simulation in Materials Science and Engineering\",\"volume\":\" 24\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modelling and Simulation in Materials Science and Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-651x/ad1f47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1361-651x/ad1f47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An ICME Framework for Short Fiber Reinforced Ceramic Matrix Composites via Direct Ink Writing
A manufacturing-driven ICME framework is proposed to model short fiber reinforced ceramic matrix composite via direct ink writing. Currently, there lacks efforts to investigate the effects of properties of short fiber reinforced ceramic matrix composites due to fiber alignment variance. A multi-scale modeling approach is presented to use representative volume elements to capture the homogenized mechanical behavior at various fiber aspect ratio and volume ratio. The orthotropic material properties are mapped to model the printing process. A series of tensile tests simulations show that with 20$^\circ$ standard deviation in fiber alignment, the fracture plane has the maximum local tensile stress range at 30 degree printing angle. This local tensile stress variation is shown the minimum at 90 degree When the standard deviation increases from 20 degree to 40 degree, the average tensile strength across the fracture plane decreases by 2%, but the stress variations increase 27.6%.