{"title":"具有集体行为的多维微型/纳米机器人","authors":"Bin Wang, Yuanyuan Lu","doi":"10.1002/smm2.1263","DOIUrl":null,"url":null,"abstract":"Recently, the collective behavior of micro/nanorobots has shown unprecedented potential in biomedicine and environmental remediation. Collective behavior can work more efficiently, adaptively, and robustly than individual micro/nanorobots. The paradigm of collective behavior needs to be understood in different dimensions, including from individual to cluster, from planar to spatial, and from mono‐functional to multifunctional. In this review, the focus will be on summarizing the achievements of collective control of micro/nanorobot swarms in recent years from different dimensions, in an attempt to better understand how the structure and materials of individuals should be designed, how collective behavior should be implemented, and how robots are functionalized to cope with practical applications under the introduction of collective control. The opportunities and challenges that collective control faces at this stage are illustrated to provide perspectives for its future development.","PeriodicalId":21794,"journal":{"name":"SmartMat","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi‐dimensional micro/nanorobots with collective behaviors\",\"authors\":\"Bin Wang, Yuanyuan Lu\",\"doi\":\"10.1002/smm2.1263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the collective behavior of micro/nanorobots has shown unprecedented potential in biomedicine and environmental remediation. Collective behavior can work more efficiently, adaptively, and robustly than individual micro/nanorobots. The paradigm of collective behavior needs to be understood in different dimensions, including from individual to cluster, from planar to spatial, and from mono‐functional to multifunctional. In this review, the focus will be on summarizing the achievements of collective control of micro/nanorobot swarms in recent years from different dimensions, in an attempt to better understand how the structure and materials of individuals should be designed, how collective behavior should be implemented, and how robots are functionalized to cope with practical applications under the introduction of collective control. The opportunities and challenges that collective control faces at this stage are illustrated to provide perspectives for its future development.\",\"PeriodicalId\":21794,\"journal\":{\"name\":\"SmartMat\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SmartMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/smm2.1263\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SmartMat","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/smm2.1263","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi‐dimensional micro/nanorobots with collective behaviors
Recently, the collective behavior of micro/nanorobots has shown unprecedented potential in biomedicine and environmental remediation. Collective behavior can work more efficiently, adaptively, and robustly than individual micro/nanorobots. The paradigm of collective behavior needs to be understood in different dimensions, including from individual to cluster, from planar to spatial, and from mono‐functional to multifunctional. In this review, the focus will be on summarizing the achievements of collective control of micro/nanorobot swarms in recent years from different dimensions, in an attempt to better understand how the structure and materials of individuals should be designed, how collective behavior should be implemented, and how robots are functionalized to cope with practical applications under the introduction of collective control. The opportunities and challenges that collective control faces at this stage are illustrated to provide perspectives for its future development.