Teng Ke, Sining Yun, Kaijun Wang, Tian Xing, Jiaoe Dang, Yongwei Zhang, Menglong Sun, Jinhang An, Lijianan Liu, Jiayu Liu
{"title":"利用椰壳构建双金属、合金和复合改性掺氮生物质衍生碳,作为促进生物能源系统甲烷生产的助燃剂","authors":"Teng Ke, Sining Yun, Kaijun Wang, Tian Xing, Jiaoe Dang, Yongwei Zhang, Menglong Sun, Jinhang An, Lijianan Liu, Jiayu Liu","doi":"10.20517/energymater.2023.62","DOIUrl":null,"url":null,"abstract":"Accelerants can enhance methane production in biomass energy systems. Single-component accelerants cannot satisfy the demands of anaerobic co-digestion (AcoD) to maximize overall performance. In this work, nitrogen-doped bio-based carbon derived from coconut shells, containing bimetallic Ni/Fe nanoparticles, FeNi3 alloys, and compounds (Fe2O3, FeN, and Fe3O4), was constructed as hybrid accelerants (Ni-N-C, Fe-N-C, and Fe/Ni-N-C) to boost CH4 production and CO2 reduction. The cumulative biogas yield (553.65, 509.65, and 587.76 mL/g volatile solids), methane content (63.58%, 57.90%, and 67.39%), and total chemical oxygen demand degradation rate (60.15%, 54.92%, and 65.38%) of AcoD with Ni-N-C (2.625 g/L), Fe-N-C (3.500 g/L), and Fe/Ni-N-C (2.625 g/L) were higher than control (346.32 mL/g volatile solids, 40.13%, and 32.03%), respectively. These digestates with Ni-N-C, Fe-N-C, and Fe/Ni-N-C showed excellent stability (mass loss: 22.97%-32.75%) and total nutrient content (4.43%-4.61%). Based on the synergistic effects of the different components of the hybrid accelerant, an understanding of the enhanced methanogenesis of AcoD was illustrated.","PeriodicalId":516139,"journal":{"name":"Energy Materials","volume":" 88","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Constructing bimetal, alloy, and compound-modified nitrogen-doped biomass-derived carbon from coconut shell as accelerants for boosting methane production in bioenergy system\",\"authors\":\"Teng Ke, Sining Yun, Kaijun Wang, Tian Xing, Jiaoe Dang, Yongwei Zhang, Menglong Sun, Jinhang An, Lijianan Liu, Jiayu Liu\",\"doi\":\"10.20517/energymater.2023.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accelerants can enhance methane production in biomass energy systems. Single-component accelerants cannot satisfy the demands of anaerobic co-digestion (AcoD) to maximize overall performance. In this work, nitrogen-doped bio-based carbon derived from coconut shells, containing bimetallic Ni/Fe nanoparticles, FeNi3 alloys, and compounds (Fe2O3, FeN, and Fe3O4), was constructed as hybrid accelerants (Ni-N-C, Fe-N-C, and Fe/Ni-N-C) to boost CH4 production and CO2 reduction. The cumulative biogas yield (553.65, 509.65, and 587.76 mL/g volatile solids), methane content (63.58%, 57.90%, and 67.39%), and total chemical oxygen demand degradation rate (60.15%, 54.92%, and 65.38%) of AcoD with Ni-N-C (2.625 g/L), Fe-N-C (3.500 g/L), and Fe/Ni-N-C (2.625 g/L) were higher than control (346.32 mL/g volatile solids, 40.13%, and 32.03%), respectively. These digestates with Ni-N-C, Fe-N-C, and Fe/Ni-N-C showed excellent stability (mass loss: 22.97%-32.75%) and total nutrient content (4.43%-4.61%). Based on the synergistic effects of the different components of the hybrid accelerant, an understanding of the enhanced methanogenesis of AcoD was illustrated.\",\"PeriodicalId\":516139,\"journal\":{\"name\":\"Energy Materials\",\"volume\":\" 88\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20517/energymater.2023.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/energymater.2023.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructing bimetal, alloy, and compound-modified nitrogen-doped biomass-derived carbon from coconut shell as accelerants for boosting methane production in bioenergy system
Accelerants can enhance methane production in biomass energy systems. Single-component accelerants cannot satisfy the demands of anaerobic co-digestion (AcoD) to maximize overall performance. In this work, nitrogen-doped bio-based carbon derived from coconut shells, containing bimetallic Ni/Fe nanoparticles, FeNi3 alloys, and compounds (Fe2O3, FeN, and Fe3O4), was constructed as hybrid accelerants (Ni-N-C, Fe-N-C, and Fe/Ni-N-C) to boost CH4 production and CO2 reduction. The cumulative biogas yield (553.65, 509.65, and 587.76 mL/g volatile solids), methane content (63.58%, 57.90%, and 67.39%), and total chemical oxygen demand degradation rate (60.15%, 54.92%, and 65.38%) of AcoD with Ni-N-C (2.625 g/L), Fe-N-C (3.500 g/L), and Fe/Ni-N-C (2.625 g/L) were higher than control (346.32 mL/g volatile solids, 40.13%, and 32.03%), respectively. These digestates with Ni-N-C, Fe-N-C, and Fe/Ni-N-C showed excellent stability (mass loss: 22.97%-32.75%) and total nutrient content (4.43%-4.61%). Based on the synergistic effects of the different components of the hybrid accelerant, an understanding of the enhanced methanogenesis of AcoD was illustrated.