虚拟振动机器人:模拟翻转和大位移过程中精确平衡岩石的动力学特性

Zhiang Chen, Ramón Arrowsmith, Jnaneshwar Das, Christine Wittich, Chris Madugo, A. Kottke
{"title":"虚拟振动机器人:模拟翻转和大位移过程中精确平衡岩石的动力学特性","authors":"Zhiang Chen, Ramón Arrowsmith, Jnaneshwar Das, Christine Wittich, Chris Madugo, A. Kottke","doi":"10.26443/seismica.v3i1.692","DOIUrl":null,"url":null,"abstract":" Understanding the dynamics of precariously balanced rocks (PBRs) is important for seismic hazard analysis and rockfall prediction. Utilizing a physics engine and robotic tools, we develop a virtual shake robot (VSR) to simulate the dynamics of PBRs during overturning and large-displacement processes. We present the background of physics engines and technical details of the VSR, including software architecture, mechanical structure, control system, and implementation procedures. Validation experiments show the median fragility contour from VSR simulation is within the 95% prediction intervals from previous physical experiments, when PGV/PGA is greater than 0.08 s. Using a physical mini shake robot, we validate the qualitative consistency of fragility anisotropy between the VSR and physical experiments. By overturning cuboids on flat terrain, the VSR reveals the relationship between fragility and geometric dimensions (e.g., aspect and scaling ratios). The ground motion orientation and lateral pedestal support affect PBR fragility. Large-displacement experiments estimate rock trajectories for different ground motions, which is useful for understanding the fate of toppled PBRs. Ground motions positively correlate with large displacement statistics such as mean trajectory length, mean largest velocity, and mean terminal distance. The overturning and large displacement processes of PBRs provide complementary methods of ground motion estimation.","PeriodicalId":509514,"journal":{"name":"Seismica","volume":" 28","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Virtual Shake Robot: Simulating Dynamics of Precariously Balanced Rocks for Overturning and Large-displacement Processes\",\"authors\":\"Zhiang Chen, Ramón Arrowsmith, Jnaneshwar Das, Christine Wittich, Chris Madugo, A. Kottke\",\"doi\":\"10.26443/seismica.v3i1.692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\" Understanding the dynamics of precariously balanced rocks (PBRs) is important for seismic hazard analysis and rockfall prediction. Utilizing a physics engine and robotic tools, we develop a virtual shake robot (VSR) to simulate the dynamics of PBRs during overturning and large-displacement processes. We present the background of physics engines and technical details of the VSR, including software architecture, mechanical structure, control system, and implementation procedures. Validation experiments show the median fragility contour from VSR simulation is within the 95% prediction intervals from previous physical experiments, when PGV/PGA is greater than 0.08 s. Using a physical mini shake robot, we validate the qualitative consistency of fragility anisotropy between the VSR and physical experiments. By overturning cuboids on flat terrain, the VSR reveals the relationship between fragility and geometric dimensions (e.g., aspect and scaling ratios). The ground motion orientation and lateral pedestal support affect PBR fragility. Large-displacement experiments estimate rock trajectories for different ground motions, which is useful for understanding the fate of toppled PBRs. Ground motions positively correlate with large displacement statistics such as mean trajectory length, mean largest velocity, and mean terminal distance. The overturning and large displacement processes of PBRs provide complementary methods of ground motion estimation.\",\"PeriodicalId\":509514,\"journal\":{\"name\":\"Seismica\",\"volume\":\" 28\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Seismica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26443/seismica.v3i1.692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seismica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26443/seismica.v3i1.692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

了解岌岌可危的平衡岩石(PBRs)的动力学对地震灾害分析和落石预测非常重要。利用物理引擎和机器人工具,我们开发了一种虚拟摇晃机器人(VSR),用于模拟岌岌可危岩石在倾覆和大位移过程中的动力学特性。我们介绍了物理引擎的背景和 VSR 的技术细节,包括软件架构、机械结构、控制系统和实施程序。验证实验表明,当 PGV/PGA 大于 0.08 秒时,VSR 模拟的脆性等值线中值在之前物理实验的 95% 预测区间内。通过在平坦地形上推翻立方体,VSR 揭示了脆性与几何尺寸(如长宽比和缩放比)之间的关系。地面运动方向和横向基座支撑会影响 PBR 的脆性。大位移实验估算了不同地面运动的岩石轨迹,这有助于了解倾覆的 PBR 的命运。地面运动与平均轨迹长度、平均最大速度和平均终端距离等大位移统计数据呈正相关。PBR的倾覆和大位移过程为地动估算提供了互补方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Virtual Shake Robot: Simulating Dynamics of Precariously Balanced Rocks for Overturning and Large-displacement Processes
 Understanding the dynamics of precariously balanced rocks (PBRs) is important for seismic hazard analysis and rockfall prediction. Utilizing a physics engine and robotic tools, we develop a virtual shake robot (VSR) to simulate the dynamics of PBRs during overturning and large-displacement processes. We present the background of physics engines and technical details of the VSR, including software architecture, mechanical structure, control system, and implementation procedures. Validation experiments show the median fragility contour from VSR simulation is within the 95% prediction intervals from previous physical experiments, when PGV/PGA is greater than 0.08 s. Using a physical mini shake robot, we validate the qualitative consistency of fragility anisotropy between the VSR and physical experiments. By overturning cuboids on flat terrain, the VSR reveals the relationship between fragility and geometric dimensions (e.g., aspect and scaling ratios). The ground motion orientation and lateral pedestal support affect PBR fragility. Large-displacement experiments estimate rock trajectories for different ground motions, which is useful for understanding the fate of toppled PBRs. Ground motions positively correlate with large displacement statistics such as mean trajectory length, mean largest velocity, and mean terminal distance. The overturning and large displacement processes of PBRs provide complementary methods of ground motion estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信