Liping Zhang, Shukai Chen, Wei Ren, Geyong Min, K. Choo
{"title":"利用深度学习基于心电图进行精确认证","authors":"Liping Zhang, Shukai Chen, Wei Ren, Geyong Min, K. Choo","doi":"10.3233/jcs-220137","DOIUrl":null,"url":null,"abstract":"Biometric-based authentication methods have been widely used, for example on portable devices (e.g., Android and iOS devices). However, there are several known limitations in existing authentication methods based on biometrics (e.g., those using facial, iris, and fingerprint). For example, in a healthcare context, a user may be physically incapable of completing the authentication due to his/her medical conditions. Hence, as a complementary authentication mechanism, there have been attempts to also utilize electrocardiogram (ECG). In this work, we propose an ECG authentication system that leverages deep learning. Specifically, to achieve generalization ability, complementary ensemble empirical decomposition (CEEMD) is introduced in our design. Moreover, a 1-D Multi-scale Convolutional Neural Network (1-D MCNN) is implemented to achieve accurate authentication. To evaluate the usability of our proposed approach, we have performed extensive experiments on eight databases, and the findings show that our proposed approach achieves good performance even on abnormal databases and can be adapted for different application environments. In addition, our adopted data from eight public databases requires theoretical statistical treatment for practical applications in real authentication scenarios.","PeriodicalId":46074,"journal":{"name":"Journal of Computer Security","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accurate authentication based on ECG using deep learning\",\"authors\":\"Liping Zhang, Shukai Chen, Wei Ren, Geyong Min, K. Choo\",\"doi\":\"10.3233/jcs-220137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biometric-based authentication methods have been widely used, for example on portable devices (e.g., Android and iOS devices). However, there are several known limitations in existing authentication methods based on biometrics (e.g., those using facial, iris, and fingerprint). For example, in a healthcare context, a user may be physically incapable of completing the authentication due to his/her medical conditions. Hence, as a complementary authentication mechanism, there have been attempts to also utilize electrocardiogram (ECG). In this work, we propose an ECG authentication system that leverages deep learning. Specifically, to achieve generalization ability, complementary ensemble empirical decomposition (CEEMD) is introduced in our design. Moreover, a 1-D Multi-scale Convolutional Neural Network (1-D MCNN) is implemented to achieve accurate authentication. To evaluate the usability of our proposed approach, we have performed extensive experiments on eight databases, and the findings show that our proposed approach achieves good performance even on abnormal databases and can be adapted for different application environments. In addition, our adopted data from eight public databases requires theoretical statistical treatment for practical applications in real authentication scenarios.\",\"PeriodicalId\":46074,\"journal\":{\"name\":\"Journal of Computer Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computer Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/jcs-220137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcs-220137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Accurate authentication based on ECG using deep learning
Biometric-based authentication methods have been widely used, for example on portable devices (e.g., Android and iOS devices). However, there are several known limitations in existing authentication methods based on biometrics (e.g., those using facial, iris, and fingerprint). For example, in a healthcare context, a user may be physically incapable of completing the authentication due to his/her medical conditions. Hence, as a complementary authentication mechanism, there have been attempts to also utilize electrocardiogram (ECG). In this work, we propose an ECG authentication system that leverages deep learning. Specifically, to achieve generalization ability, complementary ensemble empirical decomposition (CEEMD) is introduced in our design. Moreover, a 1-D Multi-scale Convolutional Neural Network (1-D MCNN) is implemented to achieve accurate authentication. To evaluate the usability of our proposed approach, we have performed extensive experiments on eight databases, and the findings show that our proposed approach achieves good performance even on abnormal databases and can be adapted for different application environments. In addition, our adopted data from eight public databases requires theoretical statistical treatment for practical applications in real authentication scenarios.
期刊介绍:
The Journal of Computer Security presents research and development results of lasting significance in the theory, design, implementation, analysis, and application of secure computer systems and networks. It will also provide a forum for ideas about the meaning and implications of security and privacy, particularly those with important consequences for the technical community. The Journal provides an opportunity to publish articles of greater depth and length than is possible in the proceedings of various existing conferences, while addressing an audience of researchers in computer security who can be assumed to have a more specialized background than the readership of other archival publications.