{"title":"自适应体素图像特征融合的新型多模型三维物体检测框架","authors":"Zhao Liu, Zhongliang Fu, Gang Li, Shengyuan Zhang","doi":"10.1049/cvi2.12269","DOIUrl":null,"url":null,"abstract":"<p>The multifaceted nature of sensor data has long been a hurdle for those seeking to harness its full potential in the field of 3D object detection. Although the utilisation of point clouds as input has yielded exceptional results, the challenge of effectively combining the complementary properties of multi-sensor data looms large. This work presents a new approach to multi-model 3D object detection, called adaptive voxel-image feature fusion (AVIFF). Adaptive voxel-image feature fusion is an end-to-end single-shot framework that can dynamically and adaptively fuse point cloud and image features, resulting in a more comprehensive and integrated analysis of the camera sensor and the LiDar sensor data. With the aid of the adaptive feature fusion module, spatialised image features can be adroitly fused with voxel-based point cloud features, while the Dense Fusion module ensures the preservation of the distinctive characteristics of 3D point cloud data through the use of a heterogeneous architecture. Notably, the authors’ framework features a novel generalised intersection over union loss function that enhances the perceptibility of object localsation and rotation in 3D space. Comprehensive experimentation has validated the efficacy of the authors’ proposed modules, firmly establishing AVIFF as a novel framework in the field of 3D object detection.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"18 5","pages":"640-651"},"PeriodicalIF":1.5000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12269","citationCount":"0","resultStr":"{\"title\":\"A novel multi-model 3D object detection framework with adaptive voxel-image feature fusion\",\"authors\":\"Zhao Liu, Zhongliang Fu, Gang Li, Shengyuan Zhang\",\"doi\":\"10.1049/cvi2.12269\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The multifaceted nature of sensor data has long been a hurdle for those seeking to harness its full potential in the field of 3D object detection. Although the utilisation of point clouds as input has yielded exceptional results, the challenge of effectively combining the complementary properties of multi-sensor data looms large. This work presents a new approach to multi-model 3D object detection, called adaptive voxel-image feature fusion (AVIFF). Adaptive voxel-image feature fusion is an end-to-end single-shot framework that can dynamically and adaptively fuse point cloud and image features, resulting in a more comprehensive and integrated analysis of the camera sensor and the LiDar sensor data. With the aid of the adaptive feature fusion module, spatialised image features can be adroitly fused with voxel-based point cloud features, while the Dense Fusion module ensures the preservation of the distinctive characteristics of 3D point cloud data through the use of a heterogeneous architecture. Notably, the authors’ framework features a novel generalised intersection over union loss function that enhances the perceptibility of object localsation and rotation in 3D space. Comprehensive experimentation has validated the efficacy of the authors’ proposed modules, firmly establishing AVIFF as a novel framework in the field of 3D object detection.</p>\",\"PeriodicalId\":56304,\"journal\":{\"name\":\"IET Computer Vision\",\"volume\":\"18 5\",\"pages\":\"640-651\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12269\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computer Vision\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12269\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12269","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A novel multi-model 3D object detection framework with adaptive voxel-image feature fusion
The multifaceted nature of sensor data has long been a hurdle for those seeking to harness its full potential in the field of 3D object detection. Although the utilisation of point clouds as input has yielded exceptional results, the challenge of effectively combining the complementary properties of multi-sensor data looms large. This work presents a new approach to multi-model 3D object detection, called adaptive voxel-image feature fusion (AVIFF). Adaptive voxel-image feature fusion is an end-to-end single-shot framework that can dynamically and adaptively fuse point cloud and image features, resulting in a more comprehensive and integrated analysis of the camera sensor and the LiDar sensor data. With the aid of the adaptive feature fusion module, spatialised image features can be adroitly fused with voxel-based point cloud features, while the Dense Fusion module ensures the preservation of the distinctive characteristics of 3D point cloud data through the use of a heterogeneous architecture. Notably, the authors’ framework features a novel generalised intersection over union loss function that enhances the perceptibility of object localsation and rotation in 3D space. Comprehensive experimentation has validated the efficacy of the authors’ proposed modules, firmly establishing AVIFF as a novel framework in the field of 3D object detection.
期刊介绍:
IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision.
IET Computer Vision welcomes submissions on the following topics:
Biologically and perceptually motivated approaches to low level vision (feature detection, etc.);
Perceptual grouping and organisation
Representation, analysis and matching of 2D and 3D shape
Shape-from-X
Object recognition
Image understanding
Learning with visual inputs
Motion analysis and object tracking
Multiview scene analysis
Cognitive approaches in low, mid and high level vision
Control in visual systems
Colour, reflectance and light
Statistical and probabilistic models
Face and gesture
Surveillance
Biometrics and security
Robotics
Vehicle guidance
Automatic model aquisition
Medical image analysis and understanding
Aerial scene analysis and remote sensing
Deep learning models in computer vision
Both methodological and applications orientated papers are welcome.
Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review.
Special Issues Current Call for Papers:
Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf
Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf