与 Kac-Moody 代数 A2(1) 有关的新型衍生非线性薛定谔方程

Dynamics Pub Date : 2024-01-18 DOI:10.3390/dynamics4010005
A. A. Stefanov
{"title":"与 Kac-Moody 代数 A2(1) 有关的新型衍生非线性薛定谔方程","authors":"A. A. Stefanov","doi":"10.3390/dynamics4010005","DOIUrl":null,"url":null,"abstract":"We derive a new system of integrable derivative non-linear Schrödinger equations with an L operator, quadratic in the spectral parameter with coefficients belonging to the Kac–Moody algebra A2(1). The construction of the fundamental analytic solutions of L is outlined and they are used to introduce the scattering data, thus formulating the scattering problem for the Lax pair L,M.","PeriodicalId":507568,"journal":{"name":"Dynamics","volume":"103 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Types of Derivative Non-linear Schrödinger Equations Related to Kac–Moody Algebra A2(1)\",\"authors\":\"A. A. Stefanov\",\"doi\":\"10.3390/dynamics4010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a new system of integrable derivative non-linear Schrödinger equations with an L operator, quadratic in the spectral parameter with coefficients belonging to the Kac–Moody algebra A2(1). The construction of the fundamental analytic solutions of L is outlined and they are used to introduce the scattering data, thus formulating the scattering problem for the Lax pair L,M.\",\"PeriodicalId\":507568,\"journal\":{\"name\":\"Dynamics\",\"volume\":\"103 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dynamics4010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics4010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们导出了一个新的可积分导数非线性薛定谔方程系统,该系统包含一个 L 算子,其系数属于 Kac-Moody 代数 A2(1)的谱参数二次方。概述了 L 基本解析解的构造,并用它们引入散射数据,从而提出了 Lax 对 L,M 的散射问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New Types of Derivative Non-linear Schrödinger Equations Related to Kac–Moody Algebra A2(1)
We derive a new system of integrable derivative non-linear Schrödinger equations with an L operator, quadratic in the spectral parameter with coefficients belonging to the Kac–Moody algebra A2(1). The construction of the fundamental analytic solutions of L is outlined and they are used to introduce the scattering data, thus formulating the scattering problem for the Lax pair L,M.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信