{"title":"与 Kac-Moody 代数 A2(1) 有关的新型衍生非线性薛定谔方程","authors":"A. A. Stefanov","doi":"10.3390/dynamics4010005","DOIUrl":null,"url":null,"abstract":"We derive a new system of integrable derivative non-linear Schrödinger equations with an L operator, quadratic in the spectral parameter with coefficients belonging to the Kac–Moody algebra A2(1). The construction of the fundamental analytic solutions of L is outlined and they are used to introduce the scattering data, thus formulating the scattering problem for the Lax pair L,M.","PeriodicalId":507568,"journal":{"name":"Dynamics","volume":"103 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Types of Derivative Non-linear Schrödinger Equations Related to Kac–Moody Algebra A2(1)\",\"authors\":\"A. A. Stefanov\",\"doi\":\"10.3390/dynamics4010005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a new system of integrable derivative non-linear Schrödinger equations with an L operator, quadratic in the spectral parameter with coefficients belonging to the Kac–Moody algebra A2(1). The construction of the fundamental analytic solutions of L is outlined and they are used to introduce the scattering data, thus formulating the scattering problem for the Lax pair L,M.\",\"PeriodicalId\":507568,\"journal\":{\"name\":\"Dynamics\",\"volume\":\"103 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dynamics4010005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dynamics4010005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们导出了一个新的可积分导数非线性薛定谔方程系统,该系统包含一个 L 算子,其系数属于 Kac-Moody 代数 A2(1)的谱参数二次方。概述了 L 基本解析解的构造,并用它们引入散射数据,从而提出了 Lax 对 L,M 的散射问题。
New Types of Derivative Non-linear Schrödinger Equations Related to Kac–Moody Algebra A2(1)
We derive a new system of integrable derivative non-linear Schrödinger equations with an L operator, quadratic in the spectral parameter with coefficients belonging to the Kac–Moody algebra A2(1). The construction of the fundamental analytic solutions of L is outlined and they are used to introduce the scattering data, thus formulating the scattering problem for the Lax pair L,M.