机械通气对小鼠心率变异性和复杂性的影响

Pub Date : 2024-01-18 DOI:10.12681/jhvms.32121
H. Kazdağli, HF Ozel, MA Özbek
{"title":"机械通气对小鼠心率变异性和复杂性的影响","authors":"H. Kazdağli, HF Ozel, MA Özbek","doi":"10.12681/jhvms.32121","DOIUrl":null,"url":null,"abstract":"In a variety of diseases, altered respiratory modulation is often an early sign of autonomic dysfunction. Therefore, understanding and evaluating the effects of artificial ventilation on the autonomic nervous system is vital. The effects of artificial ventilation on autonomic balance have been assessed by heart rate variability using frequency domain and non-linear analysis including fractal complexity and entropy analysis in anesthetized mice. BALB/c mice (n=48) were divided into two groups: Spontaneous breathing and artificial ventilation. The electrocardiograms were recorded. Four different analyses were used: i. frequency domain analysis, ii. Poincaré plots, iii. DFA and iv. Entropy analysis. An unpaired t-test was used for statistical analysis. In a ventilated group, VLF and LF parameters were not changed, whereas the HF parameter was decreased compared to spontaneous breathing mice. DFAα1 was significantly increased due to artificial ventilation but DFAα2 was unchanged. SD2/SD1 ratio was increased, however, SD1 and SD2 were not significantly affected. Also, ApEn and SampEn remained unchanged. HF parameter, DFAα1, and SD2/SD1 were affected by artificial ventilation. Decreased HF and increased DFAα1, further support the notion that HRV is dominated by respiratory sinus arrhythmia at high frequencies, this may be due to decreased vagal tone caused by artificial ventilation.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effects of mechanical ventilation on heart rate variability and complexity in mice\",\"authors\":\"H. Kazdağli, HF Ozel, MA Özbek\",\"doi\":\"10.12681/jhvms.32121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a variety of diseases, altered respiratory modulation is often an early sign of autonomic dysfunction. Therefore, understanding and evaluating the effects of artificial ventilation on the autonomic nervous system is vital. The effects of artificial ventilation on autonomic balance have been assessed by heart rate variability using frequency domain and non-linear analysis including fractal complexity and entropy analysis in anesthetized mice. BALB/c mice (n=48) were divided into two groups: Spontaneous breathing and artificial ventilation. The electrocardiograms were recorded. Four different analyses were used: i. frequency domain analysis, ii. Poincaré plots, iii. DFA and iv. Entropy analysis. An unpaired t-test was used for statistical analysis. In a ventilated group, VLF and LF parameters were not changed, whereas the HF parameter was decreased compared to spontaneous breathing mice. DFAα1 was significantly increased due to artificial ventilation but DFAα2 was unchanged. SD2/SD1 ratio was increased, however, SD1 and SD2 were not significantly affected. Also, ApEn and SampEn remained unchanged. HF parameter, DFAα1, and SD2/SD1 were affected by artificial ventilation. Decreased HF and increased DFAα1, further support the notion that HRV is dominated by respiratory sinus arrhythmia at high frequencies, this may be due to decreased vagal tone caused by artificial ventilation.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.12681/jhvms.32121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.12681/jhvms.32121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多种疾病中,呼吸调节的改变往往是自主神经功能紊乱的早期征兆。因此,了解和评估人工通气对自主神经系统的影响至关重要。我们利用频域和非线性分析(包括分形复杂性和熵分析),通过麻醉小鼠的心率变异性评估了人工通气对自律神经平衡的影响。BALB/c 小鼠(n=48)分为两组:自然呼吸组和人工通气组。记录心电图。使用了四种不同的分析方法:i. 频域分析;ii. Poincaré 图;iii.DFA 和 iv.熵分析。统计分析采用非配对 t 检验。与自主呼吸小鼠相比,通气组的 VLF 和 LF 参数没有变化,而 HF 参数有所下降。人工通气导致 DFAα1 明显增加,但 DFAα2 没有变化。SD2/SD1 比率增加,但 SD1 和 SD2 没有受到明显影响。此外,ApEn 和 SampEn 保持不变。人工通气影响了高频参数、DFAα1 和 SD2/SD1。高频参数的降低和 DFAα1 的升高进一步支持了心率变异在高频时由呼吸窦性心律失常主导的观点,这可能是由于人工通气导致迷走神经张力降低所致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The effects of mechanical ventilation on heart rate variability and complexity in mice
In a variety of diseases, altered respiratory modulation is often an early sign of autonomic dysfunction. Therefore, understanding and evaluating the effects of artificial ventilation on the autonomic nervous system is vital. The effects of artificial ventilation on autonomic balance have been assessed by heart rate variability using frequency domain and non-linear analysis including fractal complexity and entropy analysis in anesthetized mice. BALB/c mice (n=48) were divided into two groups: Spontaneous breathing and artificial ventilation. The electrocardiograms were recorded. Four different analyses were used: i. frequency domain analysis, ii. Poincaré plots, iii. DFA and iv. Entropy analysis. An unpaired t-test was used for statistical analysis. In a ventilated group, VLF and LF parameters were not changed, whereas the HF parameter was decreased compared to spontaneous breathing mice. DFAα1 was significantly increased due to artificial ventilation but DFAα2 was unchanged. SD2/SD1 ratio was increased, however, SD1 and SD2 were not significantly affected. Also, ApEn and SampEn remained unchanged. HF parameter, DFAα1, and SD2/SD1 were affected by artificial ventilation. Decreased HF and increased DFAα1, further support the notion that HRV is dominated by respiratory sinus arrhythmia at high frequencies, this may be due to decreased vagal tone caused by artificial ventilation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信