{"title":"庞加莱-韦尔的预测性:超越","authors":"A. Avron","doi":"10.1017/bsl.2024.2","DOIUrl":null,"url":null,"abstract":". On the basis of Poincar´e and Weyl’s view of predicativity as invariance, we develop an extensive framework for predicative, type-free first-order set theory in which Γ 0 and much bigger ordinals can be defined as von-Neumann ordinals. This refutes the accepted view of Γ 0 as the “limit of predicativity”.","PeriodicalId":22265,"journal":{"name":"The Bulletin of Symbolic Logic","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"POINCARÉ-WEYL’S PREDICATIVITY: GOING BEYOND\",\"authors\":\"A. Avron\",\"doi\":\"10.1017/bsl.2024.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". On the basis of Poincar´e and Weyl’s view of predicativity as invariance, we develop an extensive framework for predicative, type-free first-order set theory in which Γ 0 and much bigger ordinals can be defined as von-Neumann ordinals. This refutes the accepted view of Γ 0 as the “limit of predicativity”.\",\"PeriodicalId\":22265,\"journal\":{\"name\":\"The Bulletin of Symbolic Logic\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Bulletin of Symbolic Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/bsl.2024.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Bulletin of Symbolic Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/bsl.2024.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
. On the basis of Poincar´e and Weyl’s view of predicativity as invariance, we develop an extensive framework for predicative, type-free first-order set theory in which Γ 0 and much bigger ordinals can be defined as von-Neumann ordinals. This refutes the accepted view of Γ 0 as the “limit of predicativity”.