David R. Keppler, M. F. Karim, Matthew Mickelson, J. S. Mertoguno
{"title":"网络物理系统的 BFT++ 网络攻击弹性机制的实验与实施","authors":"David R. Keppler, M. F. Karim, Matthew Mickelson, J. S. Mertoguno","doi":"10.1145/3639570","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems (CPS) are used in various safety-critical domains such as robotics, industrial manufacturing systems, and power systems. Faults and cyber attacks have been shown to cause safety violations, which can damage the system and endanger human lives. Traditional resiliency techniques fall short of protecting against cyber threats. In this paper, we show how to extend resiliency to cyber resiliency for CPS using a specific combination of diversification, redundancy, and the physical inertia of the system.","PeriodicalId":505086,"journal":{"name":"ACM Transactions on Cyber-Physical Systems","volume":"53 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimentation and Implementation of BFT++ Cyber-attack Resilience Mechanism for Cyber Physical Systems\",\"authors\":\"David R. Keppler, M. F. Karim, Matthew Mickelson, J. S. Mertoguno\",\"doi\":\"10.1145/3639570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems (CPS) are used in various safety-critical domains such as robotics, industrial manufacturing systems, and power systems. Faults and cyber attacks have been shown to cause safety violations, which can damage the system and endanger human lives. Traditional resiliency techniques fall short of protecting against cyber threats. In this paper, we show how to extend resiliency to cyber resiliency for CPS using a specific combination of diversification, redundancy, and the physical inertia of the system.\",\"PeriodicalId\":505086,\"journal\":{\"name\":\"ACM Transactions on Cyber-Physical Systems\",\"volume\":\"53 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3639570\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3639570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Experimentation and Implementation of BFT++ Cyber-attack Resilience Mechanism for Cyber Physical Systems
Cyber-physical systems (CPS) are used in various safety-critical domains such as robotics, industrial manufacturing systems, and power systems. Faults and cyber attacks have been shown to cause safety violations, which can damage the system and endanger human lives. Traditional resiliency techniques fall short of protecting against cyber threats. In this paper, we show how to extend resiliency to cyber resiliency for CPS using a specific combination of diversification, redundancy, and the physical inertia of the system.