通过机器学习加强热声余热回收:人工神经网络-粒子群优化、自适应神经模糊推理系统和人工神经网络模型的比较分析

AI Pub Date : 2024-01-19 DOI:10.3390/ai5010013
M. Ngcukayitobi, L. Tartibu, F. Bannwart
{"title":"通过机器学习加强热声余热回收:人工神经网络-粒子群优化、自适应神经模糊推理系统和人工神经网络模型的比较分析","authors":"M. Ngcukayitobi, L. Tartibu, F. Bannwart","doi":"10.3390/ai5010013","DOIUrl":null,"url":null,"abstract":"Waste heat recovery stands out as a promising technique for tackling both energy shortages and environmental pollution. Currently, this valuable resource, generated through processes like fuel combustion or chemical reactions, is often dissipated into the environment, despite its potential to significantly contribute to the economy. To harness this untapped potential, a traveling-wave thermo-acoustic generator has been designed and subjected to comprehensive experimental analysis. Fifty-two data corresponding to different working conditions of the system were extracted to build ANN, ANFIS, and ANN-PSO models. Evaluation of performance metrics reveals that the ANN-PSO model demonstrates the highest predictive accuracy (R2=0.9959), particularly in relation to output voltage. This research demonstrates the potential of machine learning techniques for the analysis of thermo-acoustic systems. In doing so, it is possible to obtain an insight into nonlinearities inherent to thermo-acoustic systems. This advancement empowers researchers to forecast the performance characteristics of alternative configurations with a heightened level of precision.","PeriodicalId":503525,"journal":{"name":"AI","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Thermo-Acoustic Waste Heat Recovery through Machine Learning: A Comparative Analysis of Artificial Neural Network–Particle Swarm Optimization, Adaptive Neuro Fuzzy Inference System, and Artificial Neural Network Models\",\"authors\":\"M. Ngcukayitobi, L. Tartibu, F. Bannwart\",\"doi\":\"10.3390/ai5010013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waste heat recovery stands out as a promising technique for tackling both energy shortages and environmental pollution. Currently, this valuable resource, generated through processes like fuel combustion or chemical reactions, is often dissipated into the environment, despite its potential to significantly contribute to the economy. To harness this untapped potential, a traveling-wave thermo-acoustic generator has been designed and subjected to comprehensive experimental analysis. Fifty-two data corresponding to different working conditions of the system were extracted to build ANN, ANFIS, and ANN-PSO models. Evaluation of performance metrics reveals that the ANN-PSO model demonstrates the highest predictive accuracy (R2=0.9959), particularly in relation to output voltage. This research demonstrates the potential of machine learning techniques for the analysis of thermo-acoustic systems. In doing so, it is possible to obtain an insight into nonlinearities inherent to thermo-acoustic systems. This advancement empowers researchers to forecast the performance characteristics of alternative configurations with a heightened level of precision.\",\"PeriodicalId\":503525,\"journal\":{\"name\":\"AI\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ai5010013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ai5010013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

余热回收是解决能源短缺和环境污染问题的一项前景广阔的技术。目前,通过燃料燃烧或化学反应等过程产生的这一宝贵资源,尽管具有显著促进经济发展的潜力,却往往被排放到环境中。为了利用这一尚未开发的潜力,我们设计了一种行波热声发生器,并对其进行了全面的实验分析。提取了该系统不同工作条件下的 52 个数据,建立了 ANN、ANFIS 和 ANN-PSO 模型。对性能指标的评估表明,ANN-PSO 模型的预测精度最高(R2=0.9959),尤其是在输出电压方面。这项研究证明了机器学习技术在分析热声系统方面的潜力。这样,就有可能深入了解热声系统固有的非线性特性。这一进步使研究人员能够更精确地预测替代配置的性能特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhancing Thermo-Acoustic Waste Heat Recovery through Machine Learning: A Comparative Analysis of Artificial Neural Network–Particle Swarm Optimization, Adaptive Neuro Fuzzy Inference System, and Artificial Neural Network Models
Waste heat recovery stands out as a promising technique for tackling both energy shortages and environmental pollution. Currently, this valuable resource, generated through processes like fuel combustion or chemical reactions, is often dissipated into the environment, despite its potential to significantly contribute to the economy. To harness this untapped potential, a traveling-wave thermo-acoustic generator has been designed and subjected to comprehensive experimental analysis. Fifty-two data corresponding to different working conditions of the system were extracted to build ANN, ANFIS, and ANN-PSO models. Evaluation of performance metrics reveals that the ANN-PSO model demonstrates the highest predictive accuracy (R2=0.9959), particularly in relation to output voltage. This research demonstrates the potential of machine learning techniques for the analysis of thermo-acoustic systems. In doing so, it is possible to obtain an insight into nonlinearities inherent to thermo-acoustic systems. This advancement empowers researchers to forecast the performance characteristics of alternative configurations with a heightened level of precision.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
AI
AI
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信