{"title":"低推力涡扇发动机附件传动聚合物齿轮系统的概念设计与优化","authors":"Zehua Lu, Chang Liu, Changjun Liao, Jiazan Zhu, Huaiju Liu, Yiming Chen","doi":"10.1093/jcde/qwae008","DOIUrl":null,"url":null,"abstract":"\n The advancement in materials and lubrication has significantly improved the load-carrying capability of polymer gears, making them ideal for replacing metal gears in power transmission. However, this conversion is not as simple as substituting steel with polymer; it requires a thorough redesign of the structural parameters specific to polymer gears. To enable the metal-to-polymer conversion of gear in power transmission, a model for optimizing polymer gear systems was developed. An investigation of the accessory transmission system of a low-thrust turbofan aeroengine was conducted. A comprehensive performance index for the accessory transmission was developed using combined weighting coefficients to achieve the optimization goals including total mass, transmission efficiency, maximum transmission error and so on. The polymer gear system developed using the proposed optimization model demonstrated a 70.4% reduction in total mass compared to the metal gear system, as well as a transmission error decrease of over 29% when compared to polymer gear systems with standard tooth profiles. The contribution analysis results demonstrated that optimizing the tooth width, pressure angle, and addendum height of polymer gears can significantly enhance the load-carrying capacity of the polymer gear system while maximizing tooth profile flexibility.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conceptual design and optimization of polymer gear system for low-thrust turbofan aeroengine accessory transmission\",\"authors\":\"Zehua Lu, Chang Liu, Changjun Liao, Jiazan Zhu, Huaiju Liu, Yiming Chen\",\"doi\":\"10.1093/jcde/qwae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The advancement in materials and lubrication has significantly improved the load-carrying capability of polymer gears, making them ideal for replacing metal gears in power transmission. However, this conversion is not as simple as substituting steel with polymer; it requires a thorough redesign of the structural parameters specific to polymer gears. To enable the metal-to-polymer conversion of gear in power transmission, a model for optimizing polymer gear systems was developed. An investigation of the accessory transmission system of a low-thrust turbofan aeroengine was conducted. A comprehensive performance index for the accessory transmission was developed using combined weighting coefficients to achieve the optimization goals including total mass, transmission efficiency, maximum transmission error and so on. The polymer gear system developed using the proposed optimization model demonstrated a 70.4% reduction in total mass compared to the metal gear system, as well as a transmission error decrease of over 29% when compared to polymer gear systems with standard tooth profiles. The contribution analysis results demonstrated that optimizing the tooth width, pressure angle, and addendum height of polymer gears can significantly enhance the load-carrying capacity of the polymer gear system while maximizing tooth profile flexibility.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwae008\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae008","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Conceptual design and optimization of polymer gear system for low-thrust turbofan aeroengine accessory transmission
The advancement in materials and lubrication has significantly improved the load-carrying capability of polymer gears, making them ideal for replacing metal gears in power transmission. However, this conversion is not as simple as substituting steel with polymer; it requires a thorough redesign of the structural parameters specific to polymer gears. To enable the metal-to-polymer conversion of gear in power transmission, a model for optimizing polymer gear systems was developed. An investigation of the accessory transmission system of a low-thrust turbofan aeroengine was conducted. A comprehensive performance index for the accessory transmission was developed using combined weighting coefficients to achieve the optimization goals including total mass, transmission efficiency, maximum transmission error and so on. The polymer gear system developed using the proposed optimization model demonstrated a 70.4% reduction in total mass compared to the metal gear system, as well as a transmission error decrease of over 29% when compared to polymer gear systems with standard tooth profiles. The contribution analysis results demonstrated that optimizing the tooth width, pressure angle, and addendum height of polymer gears can significantly enhance the load-carrying capacity of the polymer gear system while maximizing tooth profile flexibility.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.