Kiattisak Rattanadilok Na Phuket, Tussanee Srimachai, Saowarod Luanunkarb, S. O-thong
{"title":"在厌氧协同消化过程中提高酒厂废水与糖蜜和甘油废料混合产生沼气的效率","authors":"Kiattisak Rattanadilok Na Phuket, Tussanee Srimachai, Saowarod Luanunkarb, S. O-thong","doi":"10.26554/sti.2024.9.1.120-128","DOIUrl":null,"url":null,"abstract":"This experiment was conducted to decide the impact of molasses and glycerol waste on upgraded methane production in anaerobicco-digestion with distillery wastewater. Co-substrates used for biogas production in the anaerobic co-fermentation process ofdistillery wastewater (DW) were molasses (ML) and glycerol waste (GW). The co-substrate concentration in all batch experimentsvaried between 1% and 5% (v/v). To study the efficiency of biogas production, the optimal ratio was chosen for operation in thePFR continuous reactor. Optimization results indicated that anaerobic co-digestion of DW with 5% GW and 1% ML could improvebiogas quality and quantity. HRT for 30 days allowed R2 (95% DW: 5% GW) to produce maximum methane production per 11 m3CH4/m3mixed wastewater, followed by R1 (99% DW: 1%). ML) 6 m3CH4/m3mixed wastewater and control (100% DW) could onlyproduce 2.7 m3CH4/m3mixed wastewater methane. As co-substrates, GW and ML can be balanced to coordinate the C/N ratio andpH of DW. In particular, the C/N ratio of the mixed sewage can be balanced, and the concentration of ammonia nitrogen within ananaerobic digestion tank can be diluted. Therefore, GW can be used as an optimal co-substrate as it improves the C/N ratio, dilutestoxic compounds within DW, and provides lower prices, thus increasing the potential for methanogenesis within DW affected toincrease biogas production.","PeriodicalId":21644,"journal":{"name":"Science and Technology Indonesia","volume":"24 22","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced Efficiency for Biogas Production from Distillery Wastewater as Mixed with Molasses and Glycerol Waste in the Anaerobic Co-Digestion\",\"authors\":\"Kiattisak Rattanadilok Na Phuket, Tussanee Srimachai, Saowarod Luanunkarb, S. O-thong\",\"doi\":\"10.26554/sti.2024.9.1.120-128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This experiment was conducted to decide the impact of molasses and glycerol waste on upgraded methane production in anaerobicco-digestion with distillery wastewater. Co-substrates used for biogas production in the anaerobic co-fermentation process ofdistillery wastewater (DW) were molasses (ML) and glycerol waste (GW). The co-substrate concentration in all batch experimentsvaried between 1% and 5% (v/v). To study the efficiency of biogas production, the optimal ratio was chosen for operation in thePFR continuous reactor. Optimization results indicated that anaerobic co-digestion of DW with 5% GW and 1% ML could improvebiogas quality and quantity. HRT for 30 days allowed R2 (95% DW: 5% GW) to produce maximum methane production per 11 m3CH4/m3mixed wastewater, followed by R1 (99% DW: 1%). ML) 6 m3CH4/m3mixed wastewater and control (100% DW) could onlyproduce 2.7 m3CH4/m3mixed wastewater methane. As co-substrates, GW and ML can be balanced to coordinate the C/N ratio andpH of DW. In particular, the C/N ratio of the mixed sewage can be balanced, and the concentration of ammonia nitrogen within ananaerobic digestion tank can be diluted. Therefore, GW can be used as an optimal co-substrate as it improves the C/N ratio, dilutestoxic compounds within DW, and provides lower prices, thus increasing the potential for methanogenesis within DW affected toincrease biogas production.\",\"PeriodicalId\":21644,\"journal\":{\"name\":\"Science and Technology Indonesia\",\"volume\":\"24 22\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science and Technology Indonesia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26554/sti.2024.9.1.120-128\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology Indonesia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26554/sti.2024.9.1.120-128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
Enhanced Efficiency for Biogas Production from Distillery Wastewater as Mixed with Molasses and Glycerol Waste in the Anaerobic Co-Digestion
This experiment was conducted to decide the impact of molasses and glycerol waste on upgraded methane production in anaerobicco-digestion with distillery wastewater. Co-substrates used for biogas production in the anaerobic co-fermentation process ofdistillery wastewater (DW) were molasses (ML) and glycerol waste (GW). The co-substrate concentration in all batch experimentsvaried between 1% and 5% (v/v). To study the efficiency of biogas production, the optimal ratio was chosen for operation in thePFR continuous reactor. Optimization results indicated that anaerobic co-digestion of DW with 5% GW and 1% ML could improvebiogas quality and quantity. HRT for 30 days allowed R2 (95% DW: 5% GW) to produce maximum methane production per 11 m3CH4/m3mixed wastewater, followed by R1 (99% DW: 1%). ML) 6 m3CH4/m3mixed wastewater and control (100% DW) could onlyproduce 2.7 m3CH4/m3mixed wastewater methane. As co-substrates, GW and ML can be balanced to coordinate the C/N ratio andpH of DW. In particular, the C/N ratio of the mixed sewage can be balanced, and the concentration of ammonia nitrogen within ananaerobic digestion tank can be diluted. Therefore, GW can be used as an optimal co-substrate as it improves the C/N ratio, dilutestoxic compounds within DW, and provides lower prices, thus increasing the potential for methanogenesis within DW affected toincrease biogas production.