{"title":"具有时变延迟的非线性随机脉冲积分微分演化方程的存在性和稳定性结果","authors":"Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy","doi":"10.37256/cm.5120242512","DOIUrl":null,"url":null,"abstract":"This study examines the existence, uniqueness, and stability of nonlinear random impulsive integrodifferential equations with time-varying delays under sufficient conditions. Our study is based on the Leray-Schauder alternative fixed point theorem, Pachpatte’s inequality, and the Banach contraction principle. Besides, we generalize, extend, and develop some results for Kasinathan et al.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Stability Results of Nonlinear Random Impulsive Integro-Differential Evolution Equations with Time-Varying Delays\",\"authors\":\"Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy\",\"doi\":\"10.37256/cm.5120242512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the existence, uniqueness, and stability of nonlinear random impulsive integrodifferential equations with time-varying delays under sufficient conditions. Our study is based on the Leray-Schauder alternative fixed point theorem, Pachpatte’s inequality, and the Banach contraction principle. Besides, we generalize, extend, and develop some results for Kasinathan et al.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120242512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence and Stability Results of Nonlinear Random Impulsive Integro-Differential Evolution Equations with Time-Varying Delays
This study examines the existence, uniqueness, and stability of nonlinear random impulsive integrodifferential equations with time-varying delays under sufficient conditions. Our study is based on the Leray-Schauder alternative fixed point theorem, Pachpatte’s inequality, and the Banach contraction principle. Besides, we generalize, extend, and develop some results for Kasinathan et al.