具有时变延迟的非线性随机脉冲积分微分演化方程的存在性和稳定性结果

Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy
{"title":"具有时变延迟的非线性随机脉冲积分微分演化方程的存在性和稳定性结果","authors":"Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy","doi":"10.37256/cm.5120242512","DOIUrl":null,"url":null,"abstract":"This study examines the existence, uniqueness, and stability of nonlinear random impulsive integrodifferential equations with time-varying delays under sufficient conditions. Our study is based on the Leray-Schauder alternative fixed point theorem, Pachpatte’s inequality, and the Banach contraction principle. Besides, we generalize, extend, and develop some results for Kasinathan et al.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Stability Results of Nonlinear Random Impulsive Integro-Differential Evolution Equations with Time-Varying Delays\",\"authors\":\"Sahar M. A. Maqbol, R. S. Jain, B. S. Reddy\",\"doi\":\"10.37256/cm.5120242512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study examines the existence, uniqueness, and stability of nonlinear random impulsive integrodifferential equations with time-varying delays under sufficient conditions. Our study is based on the Leray-Schauder alternative fixed point theorem, Pachpatte’s inequality, and the Banach contraction principle. Besides, we generalize, extend, and develop some results for Kasinathan et al.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120242512\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120242512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了具有时变延迟的非线性随机脉冲积分微分方程在充分条件下的存在性、唯一性和稳定性。我们的研究基于 Leray-Schauder 替代定点定理、Pachpatte 不等式和巴拿赫收缩原理。此外,我们还概括、扩展和发展了 Kasinathan 等人的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Stability Results of Nonlinear Random Impulsive Integro-Differential Evolution Equations with Time-Varying Delays
This study examines the existence, uniqueness, and stability of nonlinear random impulsive integrodifferential equations with time-varying delays under sufficient conditions. Our study is based on the Leray-Schauder alternative fixed point theorem, Pachpatte’s inequality, and the Banach contraction principle. Besides, we generalize, extend, and develop some results for Kasinathan et al.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信