骤降水平风速垂直剖面的新型经验模型

IF 4 3区 工程技术 Q3 ENERGY & FUELS
Wind Energy Pub Date : 2024-01-22 DOI:10.1002/we.2895
Huixue Dang, Guohua Xing, Hailong Wang, Dani Harmanto, Weigang Yao
{"title":"骤降水平风速垂直剖面的新型经验模型","authors":"Huixue Dang, Guohua Xing, Hailong Wang, Dani Harmanto, Weigang Yao","doi":"10.1002/we.2895","DOIUrl":null,"url":null,"abstract":"This study proposes an empirical model for preliminary wind‐resist design of downburst flow. Existing empirical models were compared with field data and found to underpredict horizontal wind speed below the height corresponding to the maximum radial velocity, due to the neglect of viscous effects and the evolution of vertical wind profiles along radial direction. To address these deficiencies, semi‐empirical piecewise functions including wall shear effects in the local turbulent boundary layer and interpolation functions were proposed to improve the accuracy of existing models. The wind profile based on Coles' theory was found to agree well with field data, with the parabola interpolation function being the most desirable. Using the proposed method, the vertical profile of horizontal wind speed at different local radial locations can be predicted for wind resist design given the inlet wind speed of the downburst flow. Overall, this model improves upon existing empirical models and allows for more accurate wind‐resist design.","PeriodicalId":23689,"journal":{"name":"Wind Energy","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel empirical model for vertical profiles of downburst horizontal wind speed\",\"authors\":\"Huixue Dang, Guohua Xing, Hailong Wang, Dani Harmanto, Weigang Yao\",\"doi\":\"10.1002/we.2895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study proposes an empirical model for preliminary wind‐resist design of downburst flow. Existing empirical models were compared with field data and found to underpredict horizontal wind speed below the height corresponding to the maximum radial velocity, due to the neglect of viscous effects and the evolution of vertical wind profiles along radial direction. To address these deficiencies, semi‐empirical piecewise functions including wall shear effects in the local turbulent boundary layer and interpolation functions were proposed to improve the accuracy of existing models. The wind profile based on Coles' theory was found to agree well with field data, with the parabola interpolation function being the most desirable. Using the proposed method, the vertical profile of horizontal wind speed at different local radial locations can be predicted for wind resist design given the inlet wind speed of the downburst flow. Overall, this model improves upon existing empirical models and allows for more accurate wind‐resist design.\",\"PeriodicalId\":23689,\"journal\":{\"name\":\"Wind Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wind Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/we.2895\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wind Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/we.2895","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个经验模型,用于下泄气流的初步抗风设计。将现有的经验模型与现场数据进行比较后发现,由于忽略了粘性效应和垂直风廓线沿径向的演变,对最大径向速度对应高度以下的水平风速预测不足。针对这些不足,提出了包括局部湍流边界层壁面剪切效应在内的半经验片断函数和插值函数,以提高现有模型的精度。研究发现,基于科尔斯理论的风廓线与实地数据吻合良好,其中抛物线插值函数最为理想。利用所提出的方法,可以在给定下泄气流入口风速的情况下,预测不同局部径向位置的水平风速垂直剖面,从而进行防风设计。总体而言,该模型改进了现有的经验模型,可用于更精确的抗风设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel empirical model for vertical profiles of downburst horizontal wind speed
This study proposes an empirical model for preliminary wind‐resist design of downburst flow. Existing empirical models were compared with field data and found to underpredict horizontal wind speed below the height corresponding to the maximum radial velocity, due to the neglect of viscous effects and the evolution of vertical wind profiles along radial direction. To address these deficiencies, semi‐empirical piecewise functions including wall shear effects in the local turbulent boundary layer and interpolation functions were proposed to improve the accuracy of existing models. The wind profile based on Coles' theory was found to agree well with field data, with the parabola interpolation function being the most desirable. Using the proposed method, the vertical profile of horizontal wind speed at different local radial locations can be predicted for wind resist design given the inlet wind speed of the downburst flow. Overall, this model improves upon existing empirical models and allows for more accurate wind‐resist design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wind Energy
Wind Energy 工程技术-工程:机械
CiteScore
9.60
自引率
7.30%
发文量
0
审稿时长
6 months
期刊介绍: Wind Energy offers a major forum for the reporting of advances in this rapidly developing technology with the goal of realising the world-wide potential to harness clean energy from land-based and offshore wind. The journal aims to reach all those with an interest in this field from academic research, industrial development through to applications, including individual wind turbines and components, wind farms and integration of wind power plants. Contributions across the spectrum of scientific and engineering disciplines concerned with the advancement of wind power capture, conversion, integration and utilisation technologies are essential features of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信