Yuanying Du, Bojian Chen, Qinxin Cao, Wenshan Wang, Haiyan Pu
{"title":"考虑柱塞挠度的航空柱塞泵润滑和泄漏特性研究","authors":"Yuanying Du, Bojian Chen, Qinxin Cao, Wenshan Wang, Haiyan Pu","doi":"10.1177/13506501231225135","DOIUrl":null,"url":null,"abstract":"Aiming at the crucial issues of serious friction, wear and large leakage in the key friction pair on the aviation plunger pump, the influence factors of pressure and shear flow are introduced to correct the Reynolds governing equation of the clearance flow, the oil film thickness equation considering the deflection of the plunger was established, and the lubrication and leakage characteristics of the plunger/cylinder pair are analyzed using finite element method, and the following conclusions are obtained: the inclination angle of the plunger has a significant influence on the lubrication characteristics of the plunger pair, the maximum oil film pressure of the tilted plunger is significantly greater than that of the non-tilted plunger, a transition from elastohydrodynamic lubrication to mixed lubrication occurs in the plunger/cylinder pair at an inclination angle of 0.00015°. When the inclination angle is 0.00025°, the maximum oil film pressure is about 14 times than that without inclination, and the minimum oil film thickness when the plunger is deflected is significantly smaller than that without inclination. As the pressure difference gradually increases, the leakage ratio of a single plunger/cylinder pair mostly shows an approximate linear increase trend. When the contact length is 17 mm, the leakage amount is the largest and the slope of the varied curve is the steepest, when the unilateral clearance increases above 3 µm, the leakage ratio increases significantly. The research can provide references for the plunger/cylinder pair precise theoretical design and the instability of the core rotating components of aviation plunger pumps.","PeriodicalId":20570,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lubrication and leakage characteristic research of aviation plunger pump considering plunger deflection\",\"authors\":\"Yuanying Du, Bojian Chen, Qinxin Cao, Wenshan Wang, Haiyan Pu\",\"doi\":\"10.1177/13506501231225135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the crucial issues of serious friction, wear and large leakage in the key friction pair on the aviation plunger pump, the influence factors of pressure and shear flow are introduced to correct the Reynolds governing equation of the clearance flow, the oil film thickness equation considering the deflection of the plunger was established, and the lubrication and leakage characteristics of the plunger/cylinder pair are analyzed using finite element method, and the following conclusions are obtained: the inclination angle of the plunger has a significant influence on the lubrication characteristics of the plunger pair, the maximum oil film pressure of the tilted plunger is significantly greater than that of the non-tilted plunger, a transition from elastohydrodynamic lubrication to mixed lubrication occurs in the plunger/cylinder pair at an inclination angle of 0.00015°. When the inclination angle is 0.00025°, the maximum oil film pressure is about 14 times than that without inclination, and the minimum oil film thickness when the plunger is deflected is significantly smaller than that without inclination. As the pressure difference gradually increases, the leakage ratio of a single plunger/cylinder pair mostly shows an approximate linear increase trend. When the contact length is 17 mm, the leakage amount is the largest and the slope of the varied curve is the steepest, when the unilateral clearance increases above 3 µm, the leakage ratio increases significantly. The research can provide references for the plunger/cylinder pair precise theoretical design and the instability of the core rotating components of aviation plunger pumps.\",\"PeriodicalId\":20570,\"journal\":{\"name\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/13506501231225135\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/13506501231225135","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Lubrication and leakage characteristic research of aviation plunger pump considering plunger deflection
Aiming at the crucial issues of serious friction, wear and large leakage in the key friction pair on the aviation plunger pump, the influence factors of pressure and shear flow are introduced to correct the Reynolds governing equation of the clearance flow, the oil film thickness equation considering the deflection of the plunger was established, and the lubrication and leakage characteristics of the plunger/cylinder pair are analyzed using finite element method, and the following conclusions are obtained: the inclination angle of the plunger has a significant influence on the lubrication characteristics of the plunger pair, the maximum oil film pressure of the tilted plunger is significantly greater than that of the non-tilted plunger, a transition from elastohydrodynamic lubrication to mixed lubrication occurs in the plunger/cylinder pair at an inclination angle of 0.00015°. When the inclination angle is 0.00025°, the maximum oil film pressure is about 14 times than that without inclination, and the minimum oil film thickness when the plunger is deflected is significantly smaller than that without inclination. As the pressure difference gradually increases, the leakage ratio of a single plunger/cylinder pair mostly shows an approximate linear increase trend. When the contact length is 17 mm, the leakage amount is the largest and the slope of the varied curve is the steepest, when the unilateral clearance increases above 3 µm, the leakage ratio increases significantly. The research can provide references for the plunger/cylinder pair precise theoretical design and the instability of the core rotating components of aviation plunger pumps.
期刊介绍:
The Journal of Engineering Tribology publishes high-quality, peer-reviewed papers from academia and industry worldwide on the engineering science associated with tribology and its applications.
"I am proud to say that I have been part of the tribology research community for almost 20 years. That community has always seemed to me to be highly active, progressive, and closely knit. The conferences are well attended and are characterised by a warmth and friendliness that transcends national boundaries. I see Part J as being an important part of that community, giving us an outlet to publish and promote our scholarly activities. I very much look forward to my term of office as editor of your Journal. I hope you will continue to submit papers, help out with reviewing, and most importantly to read and talk about the work you will find there." Professor Rob Dwyer-Joyce, Sheffield University, UK
This journal is a member of the Committee on Publication Ethics (COPE).