{"title":"可见光照射下 BiVO4-TiO2 纳米复合光催化膜上 OH 自由基的形成:光催化还原通道的作用","authors":"Shizu Terao, Yoshinori Murakami","doi":"10.3390/reactions5010004","DOIUrl":null,"url":null,"abstract":"In this study, we investigated the effects of H2O2 addition on OH radical formation on the surfaces of visible-light-irradiated BiVO4–TiO2 nanocomposite photocatalysts. Additionally, we examined the possible roles of OH radicals formed by the reduction reaction of H2O2 on the visible-light-irradiated surfaces of photocatalytic BiVO4–TiO2 nanocomposites. The BiVO4–TiO2 nanocomposite photocatalysts were prepared by mixing a BiVO4 photocatalytic film with commercially available semiconductor particulate TiO2 photocatalysts. By removing oxygen gas from the photocatalytic reactor, the effects of oxygen molecules on OH radical formation during the visible-light irradiation of BiVO4–TiO2 nanocomposite photocatalysts were examined. During visible-light irradiation, BiVO4 and BiVO4–TiO2 photocatalysts play different roles in OH radical formation because of two characteristic reduction reaction channels: (a) the direct reduction of H2O2 on photocatalytic surfaces and (b) the indirect reduction reaction of H2O2 by superoxide radical anions (O2−).","PeriodicalId":20873,"journal":{"name":"Reactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of OH Radicals on BiVO4–TiO2 Nanocomposite Photocatalytic Film under Visible-Light Irradiation: Roles of Photocatalytic Reduction Channels\",\"authors\":\"Shizu Terao, Yoshinori Murakami\",\"doi\":\"10.3390/reactions5010004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we investigated the effects of H2O2 addition on OH radical formation on the surfaces of visible-light-irradiated BiVO4–TiO2 nanocomposite photocatalysts. Additionally, we examined the possible roles of OH radicals formed by the reduction reaction of H2O2 on the visible-light-irradiated surfaces of photocatalytic BiVO4–TiO2 nanocomposites. The BiVO4–TiO2 nanocomposite photocatalysts were prepared by mixing a BiVO4 photocatalytic film with commercially available semiconductor particulate TiO2 photocatalysts. By removing oxygen gas from the photocatalytic reactor, the effects of oxygen molecules on OH radical formation during the visible-light irradiation of BiVO4–TiO2 nanocomposite photocatalysts were examined. During visible-light irradiation, BiVO4 and BiVO4–TiO2 photocatalysts play different roles in OH radical formation because of two characteristic reduction reaction channels: (a) the direct reduction of H2O2 on photocatalytic surfaces and (b) the indirect reduction reaction of H2O2 by superoxide radical anions (O2−).\",\"PeriodicalId\":20873,\"journal\":{\"name\":\"Reactions\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/reactions5010004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/reactions5010004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Formation of OH Radicals on BiVO4–TiO2 Nanocomposite Photocatalytic Film under Visible-Light Irradiation: Roles of Photocatalytic Reduction Channels
In this study, we investigated the effects of H2O2 addition on OH radical formation on the surfaces of visible-light-irradiated BiVO4–TiO2 nanocomposite photocatalysts. Additionally, we examined the possible roles of OH radicals formed by the reduction reaction of H2O2 on the visible-light-irradiated surfaces of photocatalytic BiVO4–TiO2 nanocomposites. The BiVO4–TiO2 nanocomposite photocatalysts were prepared by mixing a BiVO4 photocatalytic film with commercially available semiconductor particulate TiO2 photocatalysts. By removing oxygen gas from the photocatalytic reactor, the effects of oxygen molecules on OH radical formation during the visible-light irradiation of BiVO4–TiO2 nanocomposite photocatalysts were examined. During visible-light irradiation, BiVO4 and BiVO4–TiO2 photocatalysts play different roles in OH radical formation because of two characteristic reduction reaction channels: (a) the direct reduction of H2O2 on photocatalytic surfaces and (b) the indirect reduction reaction of H2O2 by superoxide radical anions (O2−).