V. Vaishnavi, J. S. Sulthana, K. Anandhi, R. Sivakumar, Balaji Kannan, N. A. Saravanan, Rajaprakasam Sudhagar
{"title":"利用 AMMI 和 GGE 双图模型解密对光不敏感的马齿苋 [Macrotyloma uniflorum (Lam.) Verdc.] 突变体的 G × E 相互作用","authors":"V. Vaishnavi, J. S. Sulthana, K. Anandhi, R. Sivakumar, Balaji Kannan, N. A. Saravanan, Rajaprakasam Sudhagar","doi":"10.18805/lr-5211","DOIUrl":null,"url":null,"abstract":"Background: Photosensitivity in horsegram restricts horizontal expansion in its cultivable area. Using induced mutagenesis, photo-insensitive mutants of a popular variety PAIYUR 2 were evolved. Methods: The mutants were experimented with across seasons and locations. All the experiments were conducted in the randomized block design with five replications. The AMMI and GGE biplot models were employed to tag the best-yielding and stable genotype(s). Result: The ANOVA indicated significant effects of genotypes (G), environments (E) and their combined genotype × environment interaction (G × E) for all the experimental traits implying a large range of variation. The interaction effect in AMMI has been partitioned into several principal components. Of the six Principal Components (PC), the first PC explained the major variation. It is 60.20% for the number of clusters per plant, 99.60% for days to fifty percent flowering, 92.57% for the number of pods per cluster, 96.63% for the number of pods per plant, 99.66% for days to maturity and 96.34% for yield per hectare. AMMI and GGE biplot analyses helped to identify the best performing and stable photo-insensitive mutants TNAU-HG-DM-001 and TNAU-HG-DM-004 for further exploitation.\n","PeriodicalId":17998,"journal":{"name":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","volume":"101 19","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deciphering G × E Interaction of Photo-insensitive Horsegram [Macrotyloma uniflorum (Lam.) Verdc.] Mutants using AMMI and GGE Biplot Models\",\"authors\":\"V. Vaishnavi, J. S. Sulthana, K. Anandhi, R. Sivakumar, Balaji Kannan, N. A. Saravanan, Rajaprakasam Sudhagar\",\"doi\":\"10.18805/lr-5211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Photosensitivity in horsegram restricts horizontal expansion in its cultivable area. Using induced mutagenesis, photo-insensitive mutants of a popular variety PAIYUR 2 were evolved. Methods: The mutants were experimented with across seasons and locations. All the experiments were conducted in the randomized block design with five replications. The AMMI and GGE biplot models were employed to tag the best-yielding and stable genotype(s). Result: The ANOVA indicated significant effects of genotypes (G), environments (E) and their combined genotype × environment interaction (G × E) for all the experimental traits implying a large range of variation. The interaction effect in AMMI has been partitioned into several principal components. Of the six Principal Components (PC), the first PC explained the major variation. It is 60.20% for the number of clusters per plant, 99.60% for days to fifty percent flowering, 92.57% for the number of pods per cluster, 96.63% for the number of pods per plant, 99.66% for days to maturity and 96.34% for yield per hectare. AMMI and GGE biplot analyses helped to identify the best performing and stable photo-insensitive mutants TNAU-HG-DM-001 and TNAU-HG-DM-004 for further exploitation.\\n\",\"PeriodicalId\":17998,\"journal\":{\"name\":\"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL\",\"volume\":\"101 19\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18805/lr-5211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"LEGUME RESEARCH - AN INTERNATIONAL JOURNAL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18805/lr-5211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deciphering G × E Interaction of Photo-insensitive Horsegram [Macrotyloma uniflorum (Lam.) Verdc.] Mutants using AMMI and GGE Biplot Models
Background: Photosensitivity in horsegram restricts horizontal expansion in its cultivable area. Using induced mutagenesis, photo-insensitive mutants of a popular variety PAIYUR 2 were evolved. Methods: The mutants were experimented with across seasons and locations. All the experiments were conducted in the randomized block design with five replications. The AMMI and GGE biplot models were employed to tag the best-yielding and stable genotype(s). Result: The ANOVA indicated significant effects of genotypes (G), environments (E) and their combined genotype × environment interaction (G × E) for all the experimental traits implying a large range of variation. The interaction effect in AMMI has been partitioned into several principal components. Of the six Principal Components (PC), the first PC explained the major variation. It is 60.20% for the number of clusters per plant, 99.60% for days to fifty percent flowering, 92.57% for the number of pods per cluster, 96.63% for the number of pods per plant, 99.66% for days to maturity and 96.34% for yield per hectare. AMMI and GGE biplot analyses helped to identify the best performing and stable photo-insensitive mutants TNAU-HG-DM-001 and TNAU-HG-DM-004 for further exploitation.