利用单源地表能量平衡法评估多传感器每小时玉米蒸散量估算结果

IF 1.6 4区 农林科学 Q2 AGRONOMY
Edson Costa-Filho, José L. Chávez, Huihui Zhang
{"title":"利用单源地表能量平衡法评估多传感器每小时玉米蒸散量估算结果","authors":"Edson Costa-Filho,&nbsp;José L. Chávez,&nbsp;Huihui Zhang","doi":"10.1002/ird.2923","DOIUrl":null,"url":null,"abstract":"<p>In this study, the performance of a one-source surface energy balance (OSEB) remote sensing (RS) of actual crop evapotranspiration (ET<sub>a</sub>), incorporating data from different spaceborne, airborne and proximal multispectral data, was evaluated. The RS platforms in this study included Landsat-8 (30 m pixel size), Sentinel-2 (10 m), Planet CubeSat (3 m), a handheld (proximal) multispectral radiometer (MSR) (1 m) and an unmanned aerial system (UAS) (0.03 m). A 2-year data set (2020 and 2021) from two maize research sites in Greeley and Fort Collins, Colorado, USA, provided ground-based data for estimating and evaluating hourly ET<sub>a</sub> from the OSEB algorithm. The accuracy of OSEB hourly maize ET<sub>a</sub> estimates was evaluated using calculated hourly maize ET<sub>a</sub> using high-frequency data collected with an eddy covariance energy balance system installed at each research site. The results indicated that the Planet CubeSat multispectral sensor (3 m), combined with on-site surface temperature data, yielded the least errors when predicting maize ET<sub>a</sub>. The hourly ET<sub>a</sub> estimation errors for the Planet CubeSat were MBE ± RMSE of −0.02 (−3%) ± 0.07 (13%) mm h⁻<sup>1</sup>. These results suggest the urgent need for a specific approach to improve RS multispectral and thermal radiometric data (quality) to better support sustainable irrigation water management practices.</p>","PeriodicalId":14848,"journal":{"name":"Irrigation and Drainage","volume":"73 3","pages":"988-1009"},"PeriodicalIF":1.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2923","citationCount":"0","resultStr":"{\"title\":\"Assessing multi-sensor hourly maize evapotranspiration estimation using a one-source surface energy balance approach\",\"authors\":\"Edson Costa-Filho,&nbsp;José L. Chávez,&nbsp;Huihui Zhang\",\"doi\":\"10.1002/ird.2923\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the performance of a one-source surface energy balance (OSEB) remote sensing (RS) of actual crop evapotranspiration (ET<sub>a</sub>), incorporating data from different spaceborne, airborne and proximal multispectral data, was evaluated. The RS platforms in this study included Landsat-8 (30 m pixel size), Sentinel-2 (10 m), Planet CubeSat (3 m), a handheld (proximal) multispectral radiometer (MSR) (1 m) and an unmanned aerial system (UAS) (0.03 m). A 2-year data set (2020 and 2021) from two maize research sites in Greeley and Fort Collins, Colorado, USA, provided ground-based data for estimating and evaluating hourly ET<sub>a</sub> from the OSEB algorithm. The accuracy of OSEB hourly maize ET<sub>a</sub> estimates was evaluated using calculated hourly maize ET<sub>a</sub> using high-frequency data collected with an eddy covariance energy balance system installed at each research site. The results indicated that the Planet CubeSat multispectral sensor (3 m), combined with on-site surface temperature data, yielded the least errors when predicting maize ET<sub>a</sub>. The hourly ET<sub>a</sub> estimation errors for the Planet CubeSat were MBE ± RMSE of −0.02 (−3%) ± 0.07 (13%) mm h⁻<sup>1</sup>. These results suggest the urgent need for a specific approach to improve RS multispectral and thermal radiometric data (quality) to better support sustainable irrigation water management practices.</p>\",\"PeriodicalId\":14848,\"journal\":{\"name\":\"Irrigation and Drainage\",\"volume\":\"73 3\",\"pages\":\"988-1009\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ird.2923\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Irrigation and Drainage\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ird.2923\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Irrigation and Drainage","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ird.2923","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了单源地表能量平衡(OSEB)实际作物蒸散量(ETa)遥感(RS)的性能,该遥感结合了来自不同空间、机载和近距离多光谱数据的数据。本研究中的 RS 平台包括 Landsat-8(30 米像素)、Sentinel-2(10 米)、Planet CubeSat(3 米)、手持式(近距离)多光谱辐射计(MSR)(1 米)和无人机系统(UAS)(0.03 米)。来自美国科罗拉多州格里利和柯林斯堡两个玉米研究基地的两年数据集(2020 年和 2021 年)为估算和评估 OSEB 算法的每小时蒸散发提供了地面数据。利用在每个研究地点安装的涡度协方差能量平衡系统收集的高频数据计算出的每小时玉米蒸散发,对 OSEB 每小时玉米蒸散发估算值的准确性进行了评估。结果表明,行星立方体卫星多光谱传感器(3 米)与现场地表温度数据相结合,在预测玉米蒸散发时产生的误差最小。Planet CubeSat 的每小时蒸散发估计误差为 MBE ± RMSE -0.02 (-3%) ± 0.07 (13%) mm h-1。这些结果表明,迫切需要一种特定的方法来改进 RS 多光谱和热辐射测量数据(质量),以更好地支持可持续灌溉水管理实践。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Assessing multi-sensor hourly maize evapotranspiration estimation using a one-source surface energy balance approach

Assessing multi-sensor hourly maize evapotranspiration estimation using a one-source surface energy balance approach

In this study, the performance of a one-source surface energy balance (OSEB) remote sensing (RS) of actual crop evapotranspiration (ETa), incorporating data from different spaceborne, airborne and proximal multispectral data, was evaluated. The RS platforms in this study included Landsat-8 (30 m pixel size), Sentinel-2 (10 m), Planet CubeSat (3 m), a handheld (proximal) multispectral radiometer (MSR) (1 m) and an unmanned aerial system (UAS) (0.03 m). A 2-year data set (2020 and 2021) from two maize research sites in Greeley and Fort Collins, Colorado, USA, provided ground-based data for estimating and evaluating hourly ETa from the OSEB algorithm. The accuracy of OSEB hourly maize ETa estimates was evaluated using calculated hourly maize ETa using high-frequency data collected with an eddy covariance energy balance system installed at each research site. The results indicated that the Planet CubeSat multispectral sensor (3 m), combined with on-site surface temperature data, yielded the least errors when predicting maize ETa. The hourly ETa estimation errors for the Planet CubeSat were MBE ± RMSE of −0.02 (−3%) ± 0.07 (13%) mm h⁻1. These results suggest the urgent need for a specific approach to improve RS multispectral and thermal radiometric data (quality) to better support sustainable irrigation water management practices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Irrigation and Drainage
Irrigation and Drainage 农林科学-农艺学
CiteScore
3.40
自引率
10.50%
发文量
107
审稿时长
3 months
期刊介绍: Human intervention in the control of water for sustainable agricultural development involves the application of technology and management approaches to: (i) provide the appropriate quantities of water when it is needed by the crops, (ii) prevent salinisation and water-logging of the root zone, (iii) protect land from flooding, and (iv) maximise the beneficial use of water by appropriate allocation, conservation and reuse. All this has to be achieved within a framework of economic, social and environmental constraints. The Journal, therefore, covers a wide range of subjects, advancement in which, through high quality papers in the Journal, will make a significant contribution to the enormous task of satisfying the needs of the world’s ever-increasing population. The Journal also publishes book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信