带积分边界条件的奇异扰动半线性问题的稳健数值方法

Zelal Temel, M. Çakir
{"title":"带积分边界条件的奇异扰动半线性问题的稳健数值方法","authors":"Zelal Temel, M. Çakir","doi":"10.37256/cm.5120243020","DOIUrl":null,"url":null,"abstract":"In the present study, we provide an efficient numerical approach for solving singularly perturbed nonlinear ordinary differential equations with two integral boundary conditions. We specifically propose a numerical approach for the solution of a nonlinear singular perturbed problem with integral boundary conditions. To solve the nonlinear singularly perturbed issue, we also apply finite difference methods. It explores how a specific derivative and a problemsolving approach behave. Finally, a numerical technique that employs a finite difference scheme is built using a nonuniform mesh.","PeriodicalId":504505,"journal":{"name":"Contemporary Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Numerical Method for a Singularly Perturbed Semilinear Problem with Integral Boundary Conditions\",\"authors\":\"Zelal Temel, M. Çakir\",\"doi\":\"10.37256/cm.5120243020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, we provide an efficient numerical approach for solving singularly perturbed nonlinear ordinary differential equations with two integral boundary conditions. We specifically propose a numerical approach for the solution of a nonlinear singular perturbed problem with integral boundary conditions. To solve the nonlinear singularly perturbed issue, we also apply finite difference methods. It explores how a specific derivative and a problemsolving approach behave. Finally, a numerical technique that employs a finite difference scheme is built using a nonuniform mesh.\",\"PeriodicalId\":504505,\"journal\":{\"name\":\"Contemporary Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contemporary Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37256/cm.5120243020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contemporary Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37256/cm.5120243020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提供了一种高效的数值方法,用于求解具有两个积分边界条件的奇异扰动非线性常微分方程。我们特别提出了一种求解具有积分边界条件的非线性奇异扰动问题的数值方法。为了解决非线性奇异扰动问题,我们还应用了有限差分方法。它探讨了特定导数和解决问题的方法是如何表现的。最后,使用非均匀网格建立了一种采用有限差分方案的数值技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Numerical Method for a Singularly Perturbed Semilinear Problem with Integral Boundary Conditions
In the present study, we provide an efficient numerical approach for solving singularly perturbed nonlinear ordinary differential equations with two integral boundary conditions. We specifically propose a numerical approach for the solution of a nonlinear singular perturbed problem with integral boundary conditions. To solve the nonlinear singularly perturbed issue, we also apply finite difference methods. It explores how a specific derivative and a problemsolving approach behave. Finally, a numerical technique that employs a finite difference scheme is built using a nonuniform mesh.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信