{"title":"西尔平斯基分形网络的边缘-维纳指数","authors":"Yiqi Yao, Caimin Du, Lifeng Xi","doi":"10.1142/s0218348x24500282","DOIUrl":null,"url":null,"abstract":"The edge-Wiener index, an invariant index representing the summation of the distances between every pair of edges in the graph, has monumental influence on the study of chemistry and materials science. In this paper, drawing inspiration from Gromov’s idea, we use the finite pattern method proposed by Wang et al. [Average geodesic distance of Sierpinski gasket and Sierpinski networks, Fractals 25(5) (2017) 1750044] to figure out the exact formula of edge-Wiener index of the Sierpinski fractal networks.","PeriodicalId":502452,"journal":{"name":"Fractals","volume":"5 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EDGE-WIENER INDEX OF SIERPINSKI FRACTAL NETWORKS\",\"authors\":\"Yiqi Yao, Caimin Du, Lifeng Xi\",\"doi\":\"10.1142/s0218348x24500282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge-Wiener index, an invariant index representing the summation of the distances between every pair of edges in the graph, has monumental influence on the study of chemistry and materials science. In this paper, drawing inspiration from Gromov’s idea, we use the finite pattern method proposed by Wang et al. [Average geodesic distance of Sierpinski gasket and Sierpinski networks, Fractals 25(5) (2017) 1750044] to figure out the exact formula of edge-Wiener index of the Sierpinski fractal networks.\",\"PeriodicalId\":502452,\"journal\":{\"name\":\"Fractals\",\"volume\":\"5 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
边-维纳指数是表示图中每对边之间距离总和的不变指数,在化学和材料科学研究中具有重要影响。本文从格罗莫夫的思想中得到启发,利用王晓东等人提出的有限模式法[Average geodesic distance of Sierpinski gasket and Sierpinski networks, Fractals 25(5) (2017) 1750044],算出了Sierpinski分形网络的边-维纳指数的精确公式。
The edge-Wiener index, an invariant index representing the summation of the distances between every pair of edges in the graph, has monumental influence on the study of chemistry and materials science. In this paper, drawing inspiration from Gromov’s idea, we use the finite pattern method proposed by Wang et al. [Average geodesic distance of Sierpinski gasket and Sierpinski networks, Fractals 25(5) (2017) 1750044] to figure out the exact formula of edge-Wiener index of the Sierpinski fractal networks.