西尔平斯基分形网络的边缘-维纳指数

Fractals Pub Date : 2024-01-23 DOI:10.1142/s0218348x24500282
Yiqi Yao, Caimin Du, Lifeng Xi
{"title":"西尔平斯基分形网络的边缘-维纳指数","authors":"Yiqi Yao, Caimin Du, Lifeng Xi","doi":"10.1142/s0218348x24500282","DOIUrl":null,"url":null,"abstract":"The edge-Wiener index, an invariant index representing the summation of the distances between every pair of edges in the graph, has monumental influence on the study of chemistry and materials science. In this paper, drawing inspiration from Gromov’s idea, we use the finite pattern method proposed by Wang et al. [Average geodesic distance of Sierpinski gasket and Sierpinski networks, Fractals 25(5) (2017) 1750044] to figure out the exact formula of edge-Wiener index of the Sierpinski fractal networks.","PeriodicalId":502452,"journal":{"name":"Fractals","volume":"5 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EDGE-WIENER INDEX OF SIERPINSKI FRACTAL NETWORKS\",\"authors\":\"Yiqi Yao, Caimin Du, Lifeng Xi\",\"doi\":\"10.1142/s0218348x24500282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The edge-Wiener index, an invariant index representing the summation of the distances between every pair of edges in the graph, has monumental influence on the study of chemistry and materials science. In this paper, drawing inspiration from Gromov’s idea, we use the finite pattern method proposed by Wang et al. [Average geodesic distance of Sierpinski gasket and Sierpinski networks, Fractals 25(5) (2017) 1750044] to figure out the exact formula of edge-Wiener index of the Sierpinski fractal networks.\",\"PeriodicalId\":502452,\"journal\":{\"name\":\"Fractals\",\"volume\":\"5 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

边-维纳指数是表示图中每对边之间距离总和的不变指数,在化学和材料科学研究中具有重要影响。本文从格罗莫夫的思想中得到启发,利用王晓东等人提出的有限模式法[Average geodesic distance of Sierpinski gasket and Sierpinski networks, Fractals 25(5) (2017) 1750044],算出了Sierpinski分形网络的边-维纳指数的精确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EDGE-WIENER INDEX OF SIERPINSKI FRACTAL NETWORKS
The edge-Wiener index, an invariant index representing the summation of the distances between every pair of edges in the graph, has monumental influence on the study of chemistry and materials science. In this paper, drawing inspiration from Gromov’s idea, we use the finite pattern method proposed by Wang et al. [Average geodesic distance of Sierpinski gasket and Sierpinski networks, Fractals 25(5) (2017) 1750044] to figure out the exact formula of edge-Wiener index of the Sierpinski fractal networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信