聚合物复合材料单轴拉伸流动过程中纤维取向动力学的现场实验研究

IF 3 2区 工程技术 Q2 MECHANICS
Thijs R. N. Egelmeers, N. Jaensson, Patrick D. Anderson, R. Cardinaels
{"title":"聚合物复合材料单轴拉伸流动过程中纤维取向动力学的现场实验研究","authors":"Thijs R. N. Egelmeers, N. Jaensson, Patrick D. Anderson, R. Cardinaels","doi":"10.1122/8.0000749","DOIUrl":null,"url":null,"abstract":"The demand for fiber-filled polymers has witnessed a significant upswing in recent years. A comprehensive understanding of the local fiber orientation is imperative to accurately predict the mechanical properties of fiber-filled products. In this study, we experimentally investigated the fiber orientation kinetics in uniaxial extensional flows. For this, we equipped a rheometer with a Sentmanat extensional measurement device and with an optical train that allows us to measure the fiber orientation in situ during uniaxial extension using small angle light scattering. We investigated an experimental system with glass fibers for the suspended phase (L/D=8−15), and for the matrix either low density polyethylene, which shows strain hardening in extension, or linear low density polyethylene, which shows no strain hardening. For these two polymer matrices, the fiber orientation kinetics were investigated as a function of fiber volume fraction (ϕ=1%, 5%, and 10%) and Weissenberg number (by varying the Hencky strain rate, ϵ˙H=0.01−1s−1). We found that all these parameters did not influence the fiber orientation kinetics in uniaxial extension and that these kinetics can be described by a multiparticle model, based on Jeffery’s equation for single particles. Our results show that, in uniaxial extension, fiber orientation is solely determined by the applied strain and that, up to the concentrated regime (ϕ≈D/L), fiber-fiber interactions do not influence the fiber orientation. The extensional stress growth coefficient of these composites, which is measured simultaneously with the orientation, shows high agreement with Batchelor’s equation for rodlike suspensions.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites\",\"authors\":\"Thijs R. N. Egelmeers, N. Jaensson, Patrick D. Anderson, R. Cardinaels\",\"doi\":\"10.1122/8.0000749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for fiber-filled polymers has witnessed a significant upswing in recent years. A comprehensive understanding of the local fiber orientation is imperative to accurately predict the mechanical properties of fiber-filled products. In this study, we experimentally investigated the fiber orientation kinetics in uniaxial extensional flows. For this, we equipped a rheometer with a Sentmanat extensional measurement device and with an optical train that allows us to measure the fiber orientation in situ during uniaxial extension using small angle light scattering. We investigated an experimental system with glass fibers for the suspended phase (L/D=8−15), and for the matrix either low density polyethylene, which shows strain hardening in extension, or linear low density polyethylene, which shows no strain hardening. For these two polymer matrices, the fiber orientation kinetics were investigated as a function of fiber volume fraction (ϕ=1%, 5%, and 10%) and Weissenberg number (by varying the Hencky strain rate, ϵ˙H=0.01−1s−1). We found that all these parameters did not influence the fiber orientation kinetics in uniaxial extension and that these kinetics can be described by a multiparticle model, based on Jeffery’s equation for single particles. Our results show that, in uniaxial extension, fiber orientation is solely determined by the applied strain and that, up to the concentrated regime (ϕ≈D/L), fiber-fiber interactions do not influence the fiber orientation. The extensional stress growth coefficient of these composites, which is measured simultaneously with the orientation, shows high agreement with Batchelor’s equation for rodlike suspensions.\",\"PeriodicalId\":16991,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000749\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000749","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,纤维填充聚合物的需求大幅上升。要准确预测纤维填充产品的机械性能,就必须全面了解纤维的局部取向。在本研究中,我们通过实验研究了单轴拉伸流动中的纤维取向动力学。为此,我们在流变仪上配备了森特马纳特(Sentmanat)拉伸测量装置和光学系统,以便在单轴拉伸过程中利用小角光散射对纤维取向进行现场测量。我们研究了一个实验系统,该系统的悬浮相为玻璃纤维(L/D=8-15),基体为低密度聚乙烯(在拉伸过程中会出现应变硬化)或线性低密度聚乙烯(不会出现应变硬化)。针对这两种聚合物基体,研究了纤维取向动力学与纤维体积分数(j=1%、5% 和 10%)和魏森伯格数(通过改变亨斯基应变速率,ϵ˙H=0.01-1s-1)的函数关系。我们发现,所有这些参数都不会影响单轴拉伸时的纤维取向动力学,而且这些动力学可以用基于单颗粒杰弗里方程的多颗粒模型来描述。我们的研究结果表明,在单轴拉伸过程中,纤维的取向完全由施加的应变决定,而且在浓缩状态(ϕ≈D/L)下,纤维与纤维之间的相互作用不会影响纤维的取向。这些复合材料的延伸应力增长系数与取向同时测量,与杆状悬浮液的巴切洛方程高度一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites
The demand for fiber-filled polymers has witnessed a significant upswing in recent years. A comprehensive understanding of the local fiber orientation is imperative to accurately predict the mechanical properties of fiber-filled products. In this study, we experimentally investigated the fiber orientation kinetics in uniaxial extensional flows. For this, we equipped a rheometer with a Sentmanat extensional measurement device and with an optical train that allows us to measure the fiber orientation in situ during uniaxial extension using small angle light scattering. We investigated an experimental system with glass fibers for the suspended phase (L/D=8−15), and for the matrix either low density polyethylene, which shows strain hardening in extension, or linear low density polyethylene, which shows no strain hardening. For these two polymer matrices, the fiber orientation kinetics were investigated as a function of fiber volume fraction (ϕ=1%, 5%, and 10%) and Weissenberg number (by varying the Hencky strain rate, ϵ˙H=0.01−1s−1). We found that all these parameters did not influence the fiber orientation kinetics in uniaxial extension and that these kinetics can be described by a multiparticle model, based on Jeffery’s equation for single particles. Our results show that, in uniaxial extension, fiber orientation is solely determined by the applied strain and that, up to the concentrated regime (ϕ≈D/L), fiber-fiber interactions do not influence the fiber orientation. The extensional stress growth coefficient of these composites, which is measured simultaneously with the orientation, shows high agreement with Batchelor’s equation for rodlike suspensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Rheology
Journal of Rheology 物理-力学
CiteScore
6.60
自引率
12.10%
发文量
100
审稿时长
1 months
期刊介绍: The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信