Thijs R. N. Egelmeers, N. Jaensson, Patrick D. Anderson, R. Cardinaels
{"title":"聚合物复合材料单轴拉伸流动过程中纤维取向动力学的现场实验研究","authors":"Thijs R. N. Egelmeers, N. Jaensson, Patrick D. Anderson, R. Cardinaels","doi":"10.1122/8.0000749","DOIUrl":null,"url":null,"abstract":"The demand for fiber-filled polymers has witnessed a significant upswing in recent years. A comprehensive understanding of the local fiber orientation is imperative to accurately predict the mechanical properties of fiber-filled products. In this study, we experimentally investigated the fiber orientation kinetics in uniaxial extensional flows. For this, we equipped a rheometer with a Sentmanat extensional measurement device and with an optical train that allows us to measure the fiber orientation in situ during uniaxial extension using small angle light scattering. We investigated an experimental system with glass fibers for the suspended phase (L/D=8−15), and for the matrix either low density polyethylene, which shows strain hardening in extension, or linear low density polyethylene, which shows no strain hardening. For these two polymer matrices, the fiber orientation kinetics were investigated as a function of fiber volume fraction (ϕ=1%, 5%, and 10%) and Weissenberg number (by varying the Hencky strain rate, ϵ˙H=0.01−1s−1). We found that all these parameters did not influence the fiber orientation kinetics in uniaxial extension and that these kinetics can be described by a multiparticle model, based on Jeffery’s equation for single particles. Our results show that, in uniaxial extension, fiber orientation is solely determined by the applied strain and that, up to the concentrated regime (ϕ≈D/L), fiber-fiber interactions do not influence the fiber orientation. The extensional stress growth coefficient of these composites, which is measured simultaneously with the orientation, shows high agreement with Batchelor’s equation for rodlike suspensions.","PeriodicalId":16991,"journal":{"name":"Journal of Rheology","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites\",\"authors\":\"Thijs R. N. Egelmeers, N. Jaensson, Patrick D. Anderson, R. Cardinaels\",\"doi\":\"10.1122/8.0000749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand for fiber-filled polymers has witnessed a significant upswing in recent years. A comprehensive understanding of the local fiber orientation is imperative to accurately predict the mechanical properties of fiber-filled products. In this study, we experimentally investigated the fiber orientation kinetics in uniaxial extensional flows. For this, we equipped a rheometer with a Sentmanat extensional measurement device and with an optical train that allows us to measure the fiber orientation in situ during uniaxial extension using small angle light scattering. We investigated an experimental system with glass fibers for the suspended phase (L/D=8−15), and for the matrix either low density polyethylene, which shows strain hardening in extension, or linear low density polyethylene, which shows no strain hardening. For these two polymer matrices, the fiber orientation kinetics were investigated as a function of fiber volume fraction (ϕ=1%, 5%, and 10%) and Weissenberg number (by varying the Hencky strain rate, ϵ˙H=0.01−1s−1). We found that all these parameters did not influence the fiber orientation kinetics in uniaxial extension and that these kinetics can be described by a multiparticle model, based on Jeffery’s equation for single particles. Our results show that, in uniaxial extension, fiber orientation is solely determined by the applied strain and that, up to the concentrated regime (ϕ≈D/L), fiber-fiber interactions do not influence the fiber orientation. The extensional stress growth coefficient of these composites, which is measured simultaneously with the orientation, shows high agreement with Batchelor’s equation for rodlike suspensions.\",\"PeriodicalId\":16991,\"journal\":{\"name\":\"Journal of Rheology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Rheology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1122/8.0000749\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rheology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1122/8.0000749","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
In situ experimental investigation of fiber orientation kinetics during uniaxial extensional flow of polymer composites
The demand for fiber-filled polymers has witnessed a significant upswing in recent years. A comprehensive understanding of the local fiber orientation is imperative to accurately predict the mechanical properties of fiber-filled products. In this study, we experimentally investigated the fiber orientation kinetics in uniaxial extensional flows. For this, we equipped a rheometer with a Sentmanat extensional measurement device and with an optical train that allows us to measure the fiber orientation in situ during uniaxial extension using small angle light scattering. We investigated an experimental system with glass fibers for the suspended phase (L/D=8−15), and for the matrix either low density polyethylene, which shows strain hardening in extension, or linear low density polyethylene, which shows no strain hardening. For these two polymer matrices, the fiber orientation kinetics were investigated as a function of fiber volume fraction (ϕ=1%, 5%, and 10%) and Weissenberg number (by varying the Hencky strain rate, ϵ˙H=0.01−1s−1). We found that all these parameters did not influence the fiber orientation kinetics in uniaxial extension and that these kinetics can be described by a multiparticle model, based on Jeffery’s equation for single particles. Our results show that, in uniaxial extension, fiber orientation is solely determined by the applied strain and that, up to the concentrated regime (ϕ≈D/L), fiber-fiber interactions do not influence the fiber orientation. The extensional stress growth coefficient of these composites, which is measured simultaneously with the orientation, shows high agreement with Batchelor’s equation for rodlike suspensions.
期刊介绍:
The Journal of Rheology, formerly the Transactions of The Society of Rheology, is published six times per year by The Society of Rheology, a member society of the American Institute of Physics, through AIP Publishing. It provides in-depth interdisciplinary coverage of theoretical and experimental issues drawn from industry and academia. The Journal of Rheology is published for professionals and students in chemistry, physics, engineering, material science, and mathematics.