{"title":"沿岸上升流细丝的物理性质特征,以及本格拉上升流区域次中尺度活动增强和从平衡运动向非平衡运动过渡的证据","authors":"Ryan P. North, Julia Dräger-Dietel, A. Griesel","doi":"10.5194/os-20-103-2024","DOIUrl":null,"url":null,"abstract":"Abstract. We combine high-resolution in situ data (acoustic Doppler current profiler (ADCP), Scanfish, and surface drifters) and remote sensing to investigate the physical characteristics of a major filament observed in the Benguela upwelling region. The 30–50 km wide and about 400 km long filament persisted for at least 40 d. Mixed-layer depths were less than 40 m in the filament and over 60 m outside of it. Observations of the Rossby number Ro from the various platforms provide the spatial distribution of Ro for different resolutions. Remote sensing focuses on geostrophic motions of the region related to the mesoscale eddies that drive the filament formation and thereby reveals |Ro|<0.1. Ship-based measurements in the surface mixed layer reveal 0.5<|Ro|<1, indicating the presence of unbalanced, ageostrophic motions. Time series of Ro from triplets of surface drifters trapped within the filament confirm these relatively large Ro values and show a high variability along the filament. A scale-dependent analysis of Ro, which relies on the second-order velocity structure function, was applied to the latter drifter group and to another drifter group released in the upwelling zone. The two releases explored the area nearly distinctly and simultaneously and reveal that at small scales (<15 km) Ro values are twice as large in the filament in comparison to its environment with Ro>1 for scales smaller than ∼500 m. This suggests that filaments are hotspots of ageostrophic dynamics, pointing to the presence of a forward energy cascade. The different dynamics indicated by our Ro analysis are confirmed by horizontal kinetic energy wavenumber spectra, which exhibit a power law k−α with α∼5/3 for wavelengths 2π/k smaller than a transition scale of 15 km, supporting significant submesoscale energy at scales smaller than the first baroclinic Rossby radius (Ro1∼30 km). The detected transition scale is smaller than those found in regions with less mesoscale eddy energy, consistent with previous studies. We found evidence for the processes which drive the energy transfer to turbulent scales. Positive Rossby numbers 𝒪(1) associated with cyclonic motion inhibit the occurrence of positive Ertel potential vorticity (EPV) and stabilize the water column. However, where the baroclinic component of EPV dominates, submesoscale instability analysis suggests that mostly gravitational instabilities occur and that symmetric instabilities may be important at the filament edges.\n","PeriodicalId":19535,"journal":{"name":"Ocean Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of physical properties of a coastal upwelling filament with evidence of enhanced submesoscale activity and transition from balanced to unbalanced motions in the Benguela upwelling region\",\"authors\":\"Ryan P. North, Julia Dräger-Dietel, A. Griesel\",\"doi\":\"10.5194/os-20-103-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We combine high-resolution in situ data (acoustic Doppler current profiler (ADCP), Scanfish, and surface drifters) and remote sensing to investigate the physical characteristics of a major filament observed in the Benguela upwelling region. The 30–50 km wide and about 400 km long filament persisted for at least 40 d. Mixed-layer depths were less than 40 m in the filament and over 60 m outside of it. Observations of the Rossby number Ro from the various platforms provide the spatial distribution of Ro for different resolutions. Remote sensing focuses on geostrophic motions of the region related to the mesoscale eddies that drive the filament formation and thereby reveals |Ro|<0.1. Ship-based measurements in the surface mixed layer reveal 0.5<|Ro|<1, indicating the presence of unbalanced, ageostrophic motions. Time series of Ro from triplets of surface drifters trapped within the filament confirm these relatively large Ro values and show a high variability along the filament. A scale-dependent analysis of Ro, which relies on the second-order velocity structure function, was applied to the latter drifter group and to another drifter group released in the upwelling zone. The two releases explored the area nearly distinctly and simultaneously and reveal that at small scales (<15 km) Ro values are twice as large in the filament in comparison to its environment with Ro>1 for scales smaller than ∼500 m. This suggests that filaments are hotspots of ageostrophic dynamics, pointing to the presence of a forward energy cascade. The different dynamics indicated by our Ro analysis are confirmed by horizontal kinetic energy wavenumber spectra, which exhibit a power law k−α with α∼5/3 for wavelengths 2π/k smaller than a transition scale of 15 km, supporting significant submesoscale energy at scales smaller than the first baroclinic Rossby radius (Ro1∼30 km). The detected transition scale is smaller than those found in regions with less mesoscale eddy energy, consistent with previous studies. We found evidence for the processes which drive the energy transfer to turbulent scales. Positive Rossby numbers 𝒪(1) associated with cyclonic motion inhibit the occurrence of positive Ertel potential vorticity (EPV) and stabilize the water column. However, where the baroclinic component of EPV dominates, submesoscale instability analysis suggests that mostly gravitational instabilities occur and that symmetric instabilities may be important at the filament edges.\\n\",\"PeriodicalId\":19535,\"journal\":{\"name\":\"Ocean Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ocean Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/os-20-103-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/os-20-103-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Characterization of physical properties of a coastal upwelling filament with evidence of enhanced submesoscale activity and transition from balanced to unbalanced motions in the Benguela upwelling region
Abstract. We combine high-resolution in situ data (acoustic Doppler current profiler (ADCP), Scanfish, and surface drifters) and remote sensing to investigate the physical characteristics of a major filament observed in the Benguela upwelling region. The 30–50 km wide and about 400 km long filament persisted for at least 40 d. Mixed-layer depths were less than 40 m in the filament and over 60 m outside of it. Observations of the Rossby number Ro from the various platforms provide the spatial distribution of Ro for different resolutions. Remote sensing focuses on geostrophic motions of the region related to the mesoscale eddies that drive the filament formation and thereby reveals |Ro|<0.1. Ship-based measurements in the surface mixed layer reveal 0.5<|Ro|<1, indicating the presence of unbalanced, ageostrophic motions. Time series of Ro from triplets of surface drifters trapped within the filament confirm these relatively large Ro values and show a high variability along the filament. A scale-dependent analysis of Ro, which relies on the second-order velocity structure function, was applied to the latter drifter group and to another drifter group released in the upwelling zone. The two releases explored the area nearly distinctly and simultaneously and reveal that at small scales (<15 km) Ro values are twice as large in the filament in comparison to its environment with Ro>1 for scales smaller than ∼500 m. This suggests that filaments are hotspots of ageostrophic dynamics, pointing to the presence of a forward energy cascade. The different dynamics indicated by our Ro analysis are confirmed by horizontal kinetic energy wavenumber spectra, which exhibit a power law k−α with α∼5/3 for wavelengths 2π/k smaller than a transition scale of 15 km, supporting significant submesoscale energy at scales smaller than the first baroclinic Rossby radius (Ro1∼30 km). The detected transition scale is smaller than those found in regions with less mesoscale eddy energy, consistent with previous studies. We found evidence for the processes which drive the energy transfer to turbulent scales. Positive Rossby numbers 𝒪(1) associated with cyclonic motion inhibit the occurrence of positive Ertel potential vorticity (EPV) and stabilize the water column. However, where the baroclinic component of EPV dominates, submesoscale instability analysis suggests that mostly gravitational instabilities occur and that symmetric instabilities may be important at the filament edges.
期刊介绍:
Ocean Science (OS) is a not-for-profit international open-access scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of ocean science: experimental, theoretical, and laboratory. The primary objective is to publish a very high-quality scientific journal with free Internet-based access for researchers and other interested people throughout the world.
Electronic submission of articles is used to keep publication costs to a minimum. The costs will be covered by a moderate per-page charge paid by the authors. The peer-review process also makes use of the Internet. It includes an 8-week online discussion period with the original submitted manuscript and all comments. If accepted, the final revised paper will be published online.
Ocean Science covers the following fields: ocean physics (i.e. ocean structure, circulation, tides, and internal waves); ocean chemistry; biological oceanography; air–sea interactions; ocean models – physical, chemical, biological, and biochemical; coastal and shelf edge processes; paleooceanography.