Terafets 的紧凑型 Spice 模型

Q4 Engineering
Xueqing Liu, T. Ytterdal, M. Shur
{"title":"Terafets 的紧凑型 Spice 模型","authors":"Xueqing Liu, T. Ytterdal, M. Shur","doi":"10.1142/s0129156424500046","DOIUrl":null,"url":null,"abstract":"Field effect transistors (FETs) in plasmonic regimes of operation could detect terahertz (THz) radiation and operate as THz interferometers, spectrometers, frequency-to-digital converters and THz modulators and sources. We report on the development of compact models for Si MOS (Metal-Oxide-semiconductor) and heterostructure-based plasmonic FETs (or TeraFETs) suitable for circuit design in the THz range and based on the multi-segment unified charge control model. This model accounts for the electron inertia effect (by incorporating segmented Drude inductances), for the ballistic field effect mobility, which is proportional to the channel length, for parasitic resistances and capacitances and for the leakage current. It is validated by comparison with experimental data and TCAD simulation results. The model can be used for simulation and optimization of sub-THz and THz detectors. Our simulations use up to 200 segments in the device channel. The results are also in good qualitative agreement with the hydrodynamic simulations. Applications of our model could dramatically reduce astronomical design costs of nanoscale VLSI reaching US$1.5 billion for the 3 nm technological node.","PeriodicalId":35778,"journal":{"name":"International Journal of High Speed Electronics and Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compact Spice Models for Terafets\",\"authors\":\"Xueqing Liu, T. Ytterdal, M. Shur\",\"doi\":\"10.1142/s0129156424500046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field effect transistors (FETs) in plasmonic regimes of operation could detect terahertz (THz) radiation and operate as THz interferometers, spectrometers, frequency-to-digital converters and THz modulators and sources. We report on the development of compact models for Si MOS (Metal-Oxide-semiconductor) and heterostructure-based plasmonic FETs (or TeraFETs) suitable for circuit design in the THz range and based on the multi-segment unified charge control model. This model accounts for the electron inertia effect (by incorporating segmented Drude inductances), for the ballistic field effect mobility, which is proportional to the channel length, for parasitic resistances and capacitances and for the leakage current. It is validated by comparison with experimental data and TCAD simulation results. The model can be used for simulation and optimization of sub-THz and THz detectors. Our simulations use up to 200 segments in the device channel. The results are also in good qualitative agreement with the hydrodynamic simulations. Applications of our model could dramatically reduce astronomical design costs of nanoscale VLSI reaching US$1.5 billion for the 3 nm technological node.\",\"PeriodicalId\":35778,\"journal\":{\"name\":\"International Journal of High Speed Electronics and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of High Speed Electronics and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129156424500046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Speed Electronics and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129156424500046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

处于等离子工作状态的场效应晶体管 (FET) 可以检测太赫兹(THz)辐射,并可用作太赫兹干涉仪、光谱仪、频率数字转换器以及太赫兹调制器和源。我们报告了硅 MOS(金属氧化物半导体)和基于异质结构的质子场效应晶体管(或 TeraFET)紧凑模型的开发情况,这些模型适合太赫兹范围内的电路设计,并基于多段统一电荷控制模型。该模型考虑了电子惯性效应(通过纳入分段德鲁德电感)、与沟道长度成正比的弹道场效应迁移率、寄生电阻和电容以及泄漏电流。通过与实验数据和 TCAD 仿真结果的比较,对该模型进行了验证。该模型可用于亚太赫兹和太赫兹探测器的仿真和优化。我们的仿真在器件通道中使用了多达 200 个区段。仿真结果与流体力学仿真结果也有很好的定性一致。应用我们的模型可以大大降低纳米级超大规模集成电路的天文数字般的设计成本,3 纳米技术节点的设计成本可达 15 亿美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Compact Spice Models for Terafets
Field effect transistors (FETs) in plasmonic regimes of operation could detect terahertz (THz) radiation and operate as THz interferometers, spectrometers, frequency-to-digital converters and THz modulators and sources. We report on the development of compact models for Si MOS (Metal-Oxide-semiconductor) and heterostructure-based plasmonic FETs (or TeraFETs) suitable for circuit design in the THz range and based on the multi-segment unified charge control model. This model accounts for the electron inertia effect (by incorporating segmented Drude inductances), for the ballistic field effect mobility, which is proportional to the channel length, for parasitic resistances and capacitances and for the leakage current. It is validated by comparison with experimental data and TCAD simulation results. The model can be used for simulation and optimization of sub-THz and THz detectors. Our simulations use up to 200 segments in the device channel. The results are also in good qualitative agreement with the hydrodynamic simulations. Applications of our model could dramatically reduce astronomical design costs of nanoscale VLSI reaching US$1.5 billion for the 3 nm technological node.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of High Speed Electronics and Systems
International Journal of High Speed Electronics and Systems Engineering-Electrical and Electronic Engineering
CiteScore
0.60
自引率
0.00%
发文量
22
期刊介绍: Launched in 1990, the International Journal of High Speed Electronics and Systems (IJHSES) has served graduate students and those in R&D, managerial and marketing positions by giving state-of-the-art data, and the latest research trends. Its main charter is to promote engineering education by advancing interdisciplinary science between electronics and systems and to explore high speed technology in photonics and electronics. IJHSES, a quarterly journal, continues to feature a broad coverage of topics relating to high speed or high performance devices, circuits and systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信