Asia Ali Akbar, A. Awan, Sohail Nadeem, N. A. Ahammad, Nauman Raza, M. Oreijah, Kamel Guedri, S. Allahyani
{"title":"导热系数可变和二次对流的 Carreau-Yasuda 纳米流体流的传热分析","authors":"Asia Ali Akbar, A. Awan, Sohail Nadeem, N. A. Ahammad, Nauman Raza, M. Oreijah, Kamel Guedri, S. Allahyani","doi":"10.1093/jcde/qwae009","DOIUrl":null,"url":null,"abstract":"\n Brownian motions and Thermophoresis are primary sources of nanoparticle diffusion in nanofluids, having substantial implications for the thermo-physical characteristics of nanofluids. With such a high need, the two-dimensional, laminar MHD quadratic convective stream of Carreau-Yasuda nano liquid across the stretchy sheet has been reported. The flow is caused by surface stretching. The principal purpose of this extensive study is to enhance thermal transmission. The effects of variable thermal conductivity and heat source are considered as well. The governing boundary layer equations are transmuted using similarity parameters into a series of nonlinear ODEs. The bvp4c algorithm is adopted to fix the translated system numerically. The effects of prominent similarity variables over the temperature, velocity, and concentration field are graphically visualized and verified via tables. It explored that fluid’s speed diminishes for the more significant inputs of the magnetic coefficient, Brownian motion coefficient, and Prandtl number. The thermal efficiency is improved for larger values of thermophoretic constant, varying thermal conductance, and heat-generating parameters. The concentration field has proved to be a decreasing function of nanofluid constants.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer Analysis of Carreau-Yasuda Nanofluid Flow with Variable Thermal Conductivity and Quadratic Convection\",\"authors\":\"Asia Ali Akbar, A. Awan, Sohail Nadeem, N. A. Ahammad, Nauman Raza, M. Oreijah, Kamel Guedri, S. Allahyani\",\"doi\":\"10.1093/jcde/qwae009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Brownian motions and Thermophoresis are primary sources of nanoparticle diffusion in nanofluids, having substantial implications for the thermo-physical characteristics of nanofluids. With such a high need, the two-dimensional, laminar MHD quadratic convective stream of Carreau-Yasuda nano liquid across the stretchy sheet has been reported. The flow is caused by surface stretching. The principal purpose of this extensive study is to enhance thermal transmission. The effects of variable thermal conductivity and heat source are considered as well. The governing boundary layer equations are transmuted using similarity parameters into a series of nonlinear ODEs. The bvp4c algorithm is adopted to fix the translated system numerically. The effects of prominent similarity variables over the temperature, velocity, and concentration field are graphically visualized and verified via tables. It explored that fluid’s speed diminishes for the more significant inputs of the magnetic coefficient, Brownian motion coefficient, and Prandtl number. The thermal efficiency is improved for larger values of thermophoretic constant, varying thermal conductance, and heat-generating parameters. The concentration field has proved to be a decreasing function of nanofluid constants.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwae009\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwae009","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Heat Transfer Analysis of Carreau-Yasuda Nanofluid Flow with Variable Thermal Conductivity and Quadratic Convection
Brownian motions and Thermophoresis are primary sources of nanoparticle diffusion in nanofluids, having substantial implications for the thermo-physical characteristics of nanofluids. With such a high need, the two-dimensional, laminar MHD quadratic convective stream of Carreau-Yasuda nano liquid across the stretchy sheet has been reported. The flow is caused by surface stretching. The principal purpose of this extensive study is to enhance thermal transmission. The effects of variable thermal conductivity and heat source are considered as well. The governing boundary layer equations are transmuted using similarity parameters into a series of nonlinear ODEs. The bvp4c algorithm is adopted to fix the translated system numerically. The effects of prominent similarity variables over the temperature, velocity, and concentration field are graphically visualized and verified via tables. It explored that fluid’s speed diminishes for the more significant inputs of the magnetic coefficient, Brownian motion coefficient, and Prandtl number. The thermal efficiency is improved for larger values of thermophoretic constant, varying thermal conductance, and heat-generating parameters. The concentration field has proved to be a decreasing function of nanofluid constants.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.